Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:19:33.301Z Has data issue: false hasContentIssue false

Optical Properties of Granular Materials: How to Model Coatings for Energy-Efficient Windows

Published online by Cambridge University Press:  28 February 2011

C.G. Granqvist*
Affiliation:
Physics Department, Chalmers University of Technology and University of Gothenburg, S-412 96 Gothenburg, Sweden
Get access

Abstract

I discuss coatings for energy efficient windows of several different kinds with a view to the possibility of modelling their optical properties by effective medium theory. Special attention is given to spectrally selective noble-metal-based coatings with induced transmission due to voids, angular selective metal coatings with oblique columnar microstructure, and tentative theoretical descriptions of chromogenic materials having dynamic radiative properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abeles, B., Sheng, P., Coutts, M.D. and Arie, Y., Adv. Phys. 24,407 (1975); B. Abeles. Appl. Solid State Sci. 6, 1 (1976).Google Scholar
2. Davenas, J. and Rabette, P.M., editors, Contribution of Clusters Physics to Materials Science and Technology, (Martinus Nijhoff, Dordrecht, 1986).Google Scholar
3. Barrera, R.G. and Mochdn, W.L., editors, Electrodynamics of Interfaces and Composite Systems (World Scientific, Singapore 1988).Google Scholar
4. Lafait, J. and Tanner, D.B., editors, ETOPIM2 (North-Holland, Amsterdam, 1989).Google Scholar
5. Granqvist, C.G., Appl. Opt. 20, 2606 (1981).Google Scholar
6. Granqvist, C.G., Spectrally Selective Surfaces for Heating and Cooling Applications (SPIE Opt. Engr. Press, Bellingham, 1989).Google Scholar
7. Lampert, C.M. and Granqvist, C.G., editors, Large-area Chromogenics: Materials and Devices for Transmittance Control (SPIE Opt. Engr. Press, Bellingham, 1990).Google Scholar
8. Granqvist, C.G., Crit. Rev. Solid State Mater. Sci., to be published.Google Scholar
9. Milton, G.W., J. Appl. Phys. 52, 5286, 5294 (1981).Google Scholar
10. Bergman, D.J., Ann. Phys. (N.Y.) 138, 78 (1982).Google Scholar
11. Aspnes, D.E., Thin Solid Films 89, 249 (1982).Google Scholar
12. Felderhof, B.U, J. Phys. C 15, 3943, 3953 (1982).Google Scholar
13. Lado, F. and Torquato, S., Phys. Rev. B33, 3370 (1986).Google Scholar
14. Niklasson, G.A., J. Appl. Phys. 62, 258 (1987).Google Scholar
15. McPhedran, R.C. and Milton, G.W., J. Phys. A26, 207 (1981).Google Scholar
16. Niklasson, G.A. and Granqvist, C.G., J. Appl. Phys. 55, 3382 (1984).Google Scholar
17. Bohren, C.F. and Gilra, D.P., J. Colloid Interface Sci. 72, 215 (1979).Google Scholar
18. Elliot, R.J., Krumhansl, J.A. and Leath, P.L., Rev. Mod. Phys. 46, 465 (1974).Google Scholar
19. Stroud, D. and Pan, F.P., Phys. Rev. B17, 1602 (1978).Google Scholar
20. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).Google Scholar
21. Hulst, H.C. van de, Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
22. Garnett, J.C.M., Philos. Trans. R. Soc. London 203, 385 (1904); 205, 237 (1906).Google Scholar
23. Bruggeman, D.A.G., Ann. Phys. (Leipzig) 24, 636 (1935).Google Scholar
24. Sheng, P., Phys. Rev. Lett. 45, 60 (1980).Google Scholar
25. Hanai, T., Kolloid Z. 171, 23 (1960).Google Scholar
26. Granqvist, C.G., in Electricity: Efficient End-use and New Generation Technologies. and Their Planning Implications, edited by Johansson, T.B., Bodlund, B. and Williams, R.H. (Lund University Press, Lund, Sweden, 1989) p. 89.Google Scholar
27. Spencer, A.G., Georgson, M., Bishop, C.A., Stenberg, E. and Howson, R.P., Solar Energy Mater. 18, 87 (1988).Google Scholar
28. Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986).Google Scholar
29. Smith, G.B., Nildasson, G.A., Svensson, J.S.E.M. and Granqvist, C.G., J. Appl. Phys. 59, 571 (1986).Google Scholar
30. Norrman, S., Andersson, T., Granqvist, C.G. and Hunderi, O., Phys. Rev. B 18, 674 (1978).Google Scholar
31. Bedaux, D. and Vlieger, J., Thin Solid Films 102, 265 (1983).Google Scholar
32. Abeles, F., Borensztein, Y. and Lopez-Rios, T., Festkörperprobleme 24, 93 (1984).Google Scholar
33. Gadenne, P., Beghdadi, A. and Lafait, J., Opt. Commun. 65, 17 (1988).Google Scholar
34. Yagil, Y. and Deutscher, G., Appl. Phys. Lett. 52, 373 (1988).Google Scholar
35. Kunz, M., Niklasson, G.A. and Granqvist, C.G., J. Appl. Phys. 64, 3740 (1988).Google Scholar
36. Gadenne, P., Yagil, Y. and Deutscher, G., J. Appl. Phys. 66, 3019 (1989).Google Scholar
37. Martin, P.J., J. Mater. Sci. 21, 1 (1986).Google Scholar
38. Mattox, D.M., J. Vac. Sci. Technol. A7, 1105 (1989).Google Scholar
39. Johnson, P.B. and Christy, R.W., Phys. Rev. B6, 4370 (1972).Google Scholar
40. Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W. Jr., and Ward, C.A., Appl. Opt. 22, 1099 (1983).Google Scholar
41. Mbise, G., Smith, G.B. and Granqvist, C.G., Thin Solid Films 174, L123 (1989).Google Scholar
42. Smith, G.B., Opt. Commun. 71, 279 (1989).Google Scholar
43. Mbise, G., Smith, G.B., Niklasson, G.A. and Granqvist, C.G., Appl. Phys. Lett. 54, 987 (1989).Google Scholar
44. Mbise, G., Smith, G.B., Niklasson, G.A. and Granqvist, C.G., Proc. Soc. Photo-Opt. Instrum. Engr. 1149, 179 (1989).Google Scholar
45. Leamy, H.J., Gilmer, G.H. and Dirks, A.G., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1980), Vol. 6, p. 309.Google Scholar
46. Müller, K.-H., J. Appl. Phys. 58, 2573 (1985).Google Scholar
47. Meakin, P., CRC Crit. Rev. Solid State Mater. Sci. 13, 143 (1987).Google Scholar
48. Brett, M.J., J. Mater. Sci. 24, 623 (1989).Google Scholar
49. Bemoff, A.J. and Lichter, S., Phys. Rev. B39, 10560 (1989).Google Scholar
50. Srolovitz, D.J., Mazor, A. and Bukiet, B.G., J. Vac. Sci. Technol. A6, 2371 (1988).Google Scholar
51. Karunasiri, R.P.U., Bruinsma, R. and Rudnick, J., Phys. Rev. Lett. 62, 788 (1989).Google Scholar
52. Mcleod, H.A., J. Vac. Sci. Technol. A4, 48 (1986).Google Scholar
53. Hodgkinson, I.J. and Wilson, P.W., CRC Crit. Rev. Solid State Mater. Sci. 15, 27 (1988).Google Scholar
54. Fujiwara, H., Hara, K., Kamiya, M., Hashimoto, T. and Okamoto, K., Thin Solid Films 163, 387 (1988).Google Scholar
55. Krug, J. and Meakin, P., Phys. Rev. A40, 2064 (1989).Google Scholar
56. Landau, L.D. and Lifshitz, E.M., Electrodynamics of Continuous Media (Pergamon, New York, 1960), p. 27.Google Scholar
57. Knoesen, A., Moharam, M.G. and Gaylord, T.K., Appl. Phys. B38, 171 (1985).Google Scholar
58. Ward, L., The Optical Constants of Bulk Materials and Films (Hilger, Bristol, 1988).Google Scholar
59. Palik, E.D., editor, Handbook of Optical Constants of Solids (Academic, New York, 1983), p. 329.Google Scholar
60. Dürr, H. and Bouas-Laurent, H., editors, Photochromic Materials and Systems (Elsevier, Amsterdam, 1989).Google Scholar
61. Araujo, R.J., Contemp. Phys. 21, 77 (1980).Google Scholar
62. Trotter, D.M. Jr., Schreurs, J.W.H. and Tick, P.A., J. Appl. Phys. 53, 4657 (1982).Google Scholar
63. Ruppin, R., J. Appl. Phys. 59, 1355 (1986).Google Scholar
64. Day, J.H., Chem. Rev. 63, 65 (1963); 68, 649 (1968).Google Scholar
65. Sone, K. and Fukuda, Y., Inorganic Thermochromism (Springer, Berlin, 1987).Google Scholar
66. Goodenough, J.B., Prog. Solid State Chem. 5, 145 (1971).Google Scholar
67. Jorgensen, G.V. and Lee, J.C., Solar Energy Mater. 14, 205 (1986).Google Scholar
68. Khan, K.A. and Granqvist, C.G., Appl. Phys. Lett. 55, 4 (1989).Google Scholar
69. Khan, K.A., Niklasson, G.A. and Granqvist, C.G., J. Appl. Phys. 64, 3327 (1988).Google Scholar
70. Valiev, K.A., Mokerov, V.G., and Galiev, G.B., Fiz. Tverd. Tela 16, 2361 (1974) [Sov. Phys. Solid State 16, 1535 (1975)].Google Scholar
71. Andreev, V.N., Smirnova, T.M., and Chudnovskii, F.A., Phys. Status Solidi 71, K97 (1976).Google Scholar
72. Valiev, K.A., Mokerov, V.G., Salaikin, V.V., and Petrova, A.G., Fiz. Tverd. Tela 19, 2537 (1977) [Sov. Phys. Solid State 19, 1478 (1978)].Google Scholar
73. Bilenko, D.I., Zharkova, E.A., and Khasina, E.I., Fis. Tverd. Tela 23, 1886 (1981) [Sov. Phys. Solid State 23, 1104 (1981)].Google Scholar
74. Boy, E. and Meinhardt, S., in Proc. Second Int. Workshop on Transparent Thermal Insulation Materials in Solar Energy Conversion for Buildings and Other Applications, Freiburg, Germany, 24-25 March, 1988.Google Scholar
75. Andersson, A.M., Niklasson, G.A. and Granqvist, C.G., Appl. Opt. 26, 2164 (1987).Google Scholar
76. Maheu, B., Letoulouzan, J.N. and Gousebet, G., Appl. Opt. 23, 3353 (1984).Google Scholar
77. Maheu, B. and Gousebet, G., Appl. Opt. 25, 1122 (1986).Google Scholar
78. Faughnan, B.W. and Crandall, R.S., in Display Devices, Vol. 40 of Topics in Applied Physics, edited by Pankove, J.I. (Springer, Berlin, 1980) p. 181.Google Scholar
79. Lampert, C.M., Solar Energy Mater. 11, 1 (1984).Google Scholar
80. Oi, T., Ann. Rev. Mater. Sci. 16, 185 (1986).Google Scholar
81. Donnadieu, A., Mater. Sci. Engr. B3, 185 (1989).Google Scholar
82. Nagai, J., Proc. Soc. Photo-Opt. Instrum. Engr. 1016, 28 (1988).Google Scholar
83. Kitao, M., Yamada, S., Hiruta, Y., Suzuki, N. and Urabe, K., Appl. Surface Sci. 33/34, 812 (1988).Google Scholar
84. Heilmeier, G.H. and Zanoni, L.A., Appl. Phys. Lett. 13, 91 (1968).Google Scholar
85. Basturk, N. and Grupp, J., in Ref. 7.Google Scholar
86. Drzaic, P.S., J. Appl. Phys. 60, 2142 (1986).Google Scholar
87. Montgomery, G.P. Jr., in Ref. 7.Google Scholar
88. Cohen, R.W., Cody, G.D., Coutts, M.D. and Abeles, B., Phys. Rev. B8, 3689 (1973).Google Scholar
89. Priestley, E.B., Abeles, B. and Cohen, R.W., Phys. Rev. B 12, 2121 (1975).Google Scholar
90. Abeles, B. and Gittleman, J.I., Appl. Opt. 15, 2328 (1976).Google Scholar
91. Gittleman, J.I. and Abeles, B., Phys. Rev. B6, 3273 (1977).Google Scholar
92. Sichel, E.K., Gittleman, J.I. and Abeles, B., Thin Solid Films 51, 89 (1978).Google Scholar
93. Andersson, A., Hunderi, O. and Granqvist, C.G., J. Appl. Phys. 51, 754 (1980).Google Scholar
94. Patel, R.D., Takwale, M.G., Nagar, V.K. and Bhide, V.G., Thin Solid Films 115, 169 (1984).Google Scholar
95. Blain, J., LeBel, C., Saint-Jaques, R.G. and Rheault, F., J. Appl. Phys. 58, 490 (1985).Google Scholar
96. Scherer, A., Inal, O.T. and Pettit, R.B., J. Mater. Sci. 23, 1934 (1988).Google Scholar
97. Niklasson, G.A., Proc. Soc. Photo-Opt. Instrum. Engr. 1272, to be published.Google Scholar
98. Berthier, S. and Lafait, J., J. Phys. (Paris) 40, 1093 (1979).Google Scholar
99. Zajac, G., Smith, G.B. and Ignatiev, A., J. Appl. Phys. 51, 5544 (1980).Google Scholar
100. Berthier, S. and Lafait, J., J. Phys. (Paris) 42, C1285 (1981).Google Scholar
101. Sweet, J.N., Pettit, R.B. and Chamberlain, M.B., Solar Energy Mater. 10, 251 (1984).Google Scholar
102. Scherer, A. and Inal, O.T., Appl. Opt. 24, 3348 (1985).Google Scholar
103. Scherer, A., Inal, O.T. and Pettit, R.B., J. Mater. Sci. 23, 1923 (1988).Google Scholar
104. Eriksson, T.S. and Granqvist, C.G., J. Appl. Phys. 60, 2081 (1986).Google Scholar