Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T05:32:53.695Z Has data issue: false hasContentIssue false

Optical Properties of AlN/AlGa(In)N Short Period Superlattices – Deep UV Light Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

M. Holtz
Affiliation:
Department of Physics, Texas Tech University, Lubbock, Texas 79409 Nano Tech Center, Texas Tech University, Lubbock, Texas 79409
I. Ahmad
Affiliation:
Department of Physics, Texas Tech University, Lubbock, Texas 79409 Nano Tech Center, Texas Tech University, Lubbock, Texas 79409
V. V. Kuryatkov
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical and Computer Texas Tech University, Lubbock, Texas 79409
B. A. Borisov
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical and Computer Texas Tech University, Lubbock, Texas 79409
G. D. Kipshidze
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical and Computer Texas Tech University, Lubbock, Texas 79409
A. Chandolu
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical and Computer Texas Tech University, Lubbock, Texas 79409
S. A. Nikishin
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical and Computer Texas Tech University, Lubbock, Texas 79409
H. Temkin
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 Department of Electrical and Computer Texas Tech University, Lubbock, Texas 79409
Get access

Abstract

We report optical properties of deep UV light emitting diodes (LEDs). Devices are based on short period superlattices of AlN/AlxGa1-x(In)N (x ∼ 0.08) grown by gas source molecular beam epitaxy with ammonia. Structures consist of a 50-nm thick AlN nucleation/buffer layer deposited on sapphire. This is followed by a 1-micron thick Si-doped buffer layer of AlGaN or AlN/AlGa(In)N designed to be transparent for wavelengths longer than 240 nm. The design thickness of the superlattice well layers is systematically varied from 0.50 nm to 1.25 nm and the thickness of the barrier is varied from 0.75 nm to 2.00 nm. The n- and p-type SPSLs were doped with Si derived from silane and Mg evaporated from an effusion cell, respectively. We investigate device structures as well as superlattices which are nominally undoped, p-type, and n-type. Optical properties are investigated using reflectance, cathodoluminescence, and, in the case of LEDs, using electroluminescence. By controlling the properties of the superlattice, we obtain optical gaps ranging from 4.5 eV (276 nm) and 5.3 eV (234 nm). A systematic shift between the optical gap and the CL peak emission energy is discussed. Electrical properties are studied using I-V, C-V, and Hall effect. LEDs based on these superlattices and operating in the range of 260 to 280 nm exhibit turn-on voltages in the range of 4 to 6 V and support dc current densities in excess of 500 A/cm2 at room temperature. We present results on the electrical and optical properties of our LEDs designed using these studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kipshidze, G., Kuryatkov, V., Borisov, B., Holtz, M., Nikishin, S. A., and Temkin, H., Appl. Phys. Lett., 80, 3682, 2002.Google Scholar
2. Zhu, K., Kuryatkov, V., Borisov, B., Kipshidze, G., Nikishin, S. A., Temkin, H., and Holtz, M., Appl. Phys. Lett., 81, 4688, 2002.Google Scholar
3. Adivarahan, V., Zhang, J., Chitnis, A., Shuai, W., Sun, J., Pachipulusu, R., Shatalov, M., and Khan, M. A., Jpn. J. Appl. Phys., 41, L435, 2002.Google Scholar
4. Yasan, A., McClintock, R., Mayers, K., Darvish, S. R., Kung, P., and Razeghi, M., Appl. Phys. Lett., 81, 801, 2002.Google Scholar
5. Kipshidze, G., Kuryatkov, V., Zhu, K., Borisov, B., Holtz, M., Nikishin, S. A., and Temkin, H., Appl. Phys. Lett., 93, 1363, 2003.Google Scholar
6. Kuryatkov, V., Zhu, K., Borisov, B., Chandolu, A., Gheriasou, I., Kipshidze, G., Chu, S. N. G., Holtz, M., Kudryavtsev, Yu., Asomoza, R., Nikishin, S. A., and Temkin, H., Appl. Phys. Lett., 83, 1319, 2003.Google Scholar
7. Nikishin, S. A., Kuryatkov, V., Chandolu, A., Borisov, B., Kipshidze, G., Temkin, H., Ahmad, I., and Holtz, M., Jpn. J. Appl. Phys., 42, 2003.Google Scholar
8. Kipshidze, G., Kuryatkov, V., Borisov, B., Nikishin, S. A., Holtz, M., Chu, S. N. G., and Temkin, H., phys. stat. solidi (a), 192, 286, 2002.Google Scholar
9. Kipshidze, G., Kuryatkov, V., Zhu, K., Borisov, B., Holtz, M., Nikishin, S. A., and Temkin, H., J. Appl. Phys., 93, 1363, 2003.Google Scholar
10. Hirayama, H., Kinoshita, A., Ainoya, M., Hirata, A., and Aoyagi, Y., phys. stat. sol. (a), 188, 83, 2001.Google Scholar
11. Sitar, Z., Paisley, M. J., Yan, B., Ruan, J., Choyke, W. J., and Davis, R. F., J. Vac. Sci. Technol. B, 8, 316, 1990.Google Scholar
12. Khan, M. A., Kuznia, J. N., Olson, D. T., George, T., and Pike, W. T., Appl. Phys. Lett., 63, 3470, 1993.Google Scholar
13. Holtz, M., Kipshidze, G., Chandolu, A., Yun, J., Borisov, B., Kuryatkov, V., Zhu, K., Chu, S. N. G., Nikishin, S. A., and Temkin, H., Mat. Res. Soc. Symp. Proc., 744, M10.1.1, 2003.Google Scholar
14. Chandolu, A., Nikishin, S. A., and Temkin, H., in preparation, 2003.Google Scholar