Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T16:26:03.723Z Has data issue: false hasContentIssue false

Optical Properties of Alloyed PbSexS1-x Nanorods

Published online by Cambridge University Press:  19 April 2012

Anna Rubin Brusilovski
Affiliation:
Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Haifa 32000, Israel
Dikla Kolan
Affiliation:
Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Haifa 32000, Israel
Georgy I. Maikov
Affiliation:
Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Haifa 32000, Israel
Roman Vaxenburg
Affiliation:
Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Haifa 32000, Israel
Aldona Sashchiuk
Affiliation:
Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Haifa 32000, Israel
Efrat Lifshitz
Affiliation:
Schulich Faculty of Chemistry, Russell Berrie Nanotechnology Institute, Solid State Institute, Technion, Haifa 32000, Israel
Get access

Abstract

We report the synthesis, structural and optical characterization of PbSexS1-x nanorods with diameter between 2 nm to 4.5 nm and length of 12 nm to 24 nm. Their typical photoluminescence spectra exhibit a split of the band-edge exciton band. The temperature dependence photoluminescence of these nanorods revealed a relatively small band-gap temperature coefficient and a mild extension of the radiative lifetime at cryogenic temperatures - all in comparison with photoluminescence processes in PbSe nanorods, as well as in PbSexS1-x quantum dots, with similar absorption band-edge energy. A theoretical model associates the experimental observations to the occurrence of independent transitions from either degenerate or non-degenerate band-edge valleys in PbSexS1-x nanorods, each of which possessing a relatively small electron-hole exchange interaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steigerwald, M. L.; Brus, L. E., Semiconductor crystallites: a class of large molecules. Accounts of Chemical Research 1990, 23(6), 183188.Google Scholar
2. Efros, A. L.; Rosen, M., The Electronic Structure of Semiconductor Nanocrystals. Annual Review of Materials Science 2000, 30(1), 475521.Google Scholar
3. Kigel, A.; Brumer, M.; Maikov, G.; Sashchiuk, A.; Lifshitz, E., The ground-state exciton lifetime of PbSe nanocrystal quantum dots. Superlattices and Microstructures 2009, 46(1-2), 272276.Google Scholar
4. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C., Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chemical Reviews 2010, 110(11), 68736890.Google Scholar
5. Nozik, A. J., Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures 2002, 14(1-2), 115120.Google Scholar
6. Allen, P. M.; Liu, W.; Chauhan, V. P.; Lee, J.; Ting, A. Y.; Fukumura, D.; Jain, R. K.; Bawendi, M. G., InAs(ZnCdS) Quantum Dots Optimized for Biological Imaging in the Near-Infrared. Journal of the American Chemical Society 2009, 132 (2), 470471.Google Scholar
7. Regulacio, M. D.; Han, M.-Y., Composition-Tunable Alloyed Semiconductor Nanocrystals. Accounts of Chemical Research 2010, 43(5), 621630.Google Scholar
8. Brumer, M.; Kigel, A.; Amirav, L.; Sashchiuk, A.; Solomesch, O.; Tessler, N.; Lifshitz, E., PbSe/PbS and PbSe/PbSexS1-x Core/Shell Nanocrystals. Advanced Functional Materials 2005, 15(7), 11111116.Google Scholar
9. Hu, J.; Li, L.-s.; Yang, W.; Manna, L.; Wang, L.-w.; Alivisatos, A. P., Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science 2001, 292(5524), 20602063.Google Scholar
10. Cunningham, P. D.; Boercker, J. E.; Foos, E. E.; Lumb, M. P.; Smith, A. R.; Tischler, J. G.; Melinger, J. S., Enhanced Multiple Exciton Generation in Quasi-One-Dimensional Semiconductors. Nano Letters 2011, 11(8), 34763481.Google Scholar
11. Persano, A.; De Giorgi, M.; Fiore, A.; Cingolani, R.; Manna, L.; Cola, A.; Krahne, R., Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods. ACS Nano 2010, 4(3), 16461652.Google Scholar
12. Tischler, J. G.; Kennedy, T. A.; Glaser, E. R.; Efros, A. L.; Foos, E. E.; Boercker, J. E.; Zega, T. J.; Stroud, R. M.; Erwin, S. C., Band-edge excitons in PbSe nanocrystals and nanorods. Physical Review B 2010, 82(24), 245303.Google Scholar
13. Maikov, G. I.; Vaxenburg, R.; Sashchiuk, A.; Lifshitz, E., Composition-Tunable Optical Properties of Colloidal IV−VI Quantum Dots, Composed of Core/Shell Heterostructures with Alloy Components. ACS Nano 2010, 4(11), 65476556.Google Scholar
14. Bashouti, M.; Lifshitz, E., PbS Sub-micrometer Structures with Anisotropic Shape: Ribbons, Wires, Octapods, and Hollowed Cubes. Inorganic Chemistry 2007, 47(2), 678682.Google Scholar
15. Cho, K.-S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. Journal of the American Chemical Society 2005, 127(19), 71407147.Google Scholar
16. Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; Weller, H., Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment. Science 2010, 329(5991), 550553.Google Scholar
17. Du, H.; Chen, C.; Krishnan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J., Optical Properties of Colloidal PbSe Nanocrystals. Nano Letters 2002, 2(11), 13211324.Google Scholar
18. Chappell, H. E.; Hughes, B. K.; Beard, M. C.; Nozik, A. J.; Johnson, J. C., Emission Quenching in PbSe Quantum Dot Arrays by Short-Term Air Exposure. The Journal of Physical Chemistry Letters 2011, 2(8), 889893.Google Scholar
19. Varshni, Y. P., Temperature dependence of the energy gap in semiconductors. Physica 1967, 34(1), 149154.Google Scholar
20. Olkhovets, A.; Hsu, R. C.; Lipovskii, A.; Wise, F. W., Size-Dependent Temperature Variation of the Energy Gap in Lead-Salt Quantum Dots. Physical Review Letters 1998, 81(16), 3539.Google Scholar
21. Hyun, B.-R.; Bartnik, A. C.; Koh, W.-k.; Agladze, N. I.; Wrubel, J. P.; Sievers, A.J.; Murray, C. B.; Wise, F. W., Far-Infrared Absorption of PbSe Nanorods. Nano Letters 2011, 11(7), 27862790.Google Scholar
22. Bartnik, A. C.; Efros, A. L.; Koh, W. K.; Murray, C. B.; Wise, F. W., Electronic states and optical properties of PbSe nanorods and nanowires. Physical Review B 2010, 82(19), 195313.Google Scholar