Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:04:32.080Z Has data issue: false hasContentIssue false

Optical Power Limiters for Nanosecond Pulses: Design of New Dendritic Chromophores with Exceptionally Large Two-Photon Cross-Sections

Published online by Cambridge University Press:  10 February 2011

E. H. Elandaloussi
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, [email protected]
C. Spangler
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, [email protected]
M. Casstevens
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
D. Kumar
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
J. Weibel
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
R. Burzynski
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
G.-S. HE
Affiliation:
Department of Chemistry, SUNY-Buffalo, Amherst, NY 14228
P. Prasad
Affiliation:
Department of Chemistry, SUNY-Buffalo, Amherst, NY 14228
Get access

Abstract

Over the past five years there has been a renaissance in design studies of chromophores with the possibility of enhanced two-photon absorption (TPA). While two-photon absorption has been described for molecules such as laser dyes in solution for a number of years1, it has only been recently that researchers have attempted detailed structure-property relationships to elucidate how new chromophores with greatly enhanced two-photon cross-sections might be designed. Since the intrinsic cross-sections are related to the Im component of the third order optical nonlinearity, it should come as no surprise that much of the previous work in the literature which focused on structure-property relationships for molecules with enhanced NLO response might be applicable to the design of new TPA chromophores. In this presentation we will review our recent studies in this area, and our rationale for the applicability of dendritic strctures based on photonic-active repeat units for enhancment of two-photon absorption, particularly in the area of optical power limiting applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kershaw, S., in Characterization Techniques and Tabulations for Organic Nonlinear OpticalMaterials, edited by Kuzyk, M. and Dirk, C., Marcel Dekker, Inc. New York, 1998, Ch 7.Google Scholar
2. He, G. S., Xu, G. C., Prasad, P. N., Reinhardt, B. A., Bhatt, J. C. and Dillard, A. G., Opt. Lett. 20, p. 435 (1995).Google Scholar
3. Reinhardt, B. A., Brott, L. L., Clarson, S. J., Kannon, R. and Dillard, A. G., Proc. SPIE 3146, p.2 (1997).Google Scholar
4. Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannon, R., Yuan, L., He, G.-S. and Prasad, P. N., Chem. Mater. 10, p. 1863 (1998).Google Scholar
5. Albota, M.., Beljonne, D., Bredas, J.-L., Ehrlick, J. E., Fu, J.-Y., Heikal, A. A., Hess, S. E., Kogej, T., Levin, M. D., Marder, S. R., D. McCord-Maughan, Perry, J. W., Rockel, H., Rumi, M., Subramanian, G., Webb, W. W., Wu, X.-L. and Xu, C., Science 281, p. 1653 (1998).Google Scholar
6. Ehrlich, J. E., Wu, X. L., Lee, I.-Y. S., Hu, Z.-Y., Rockel, H., Marder, S. R. and Perry, J. W., Opt.Lett. 22, p. 1843 (1997).Google Scholar
7. Ehrlich, J. E., Wu, X. L., Lee, I.-Y., Heikal, A. A., Hu, Z.-Y., Rockel, H., Marder, S. R. and Perry, J. W., Mat. Res. Soc. Symp. Proc. 479, p. 9 (1997).Google Scholar
8. Newkome, G. R., Moorefield, C. N. and Vogtle, F., Dendritic Molecules, VCH, Weinheim, 1996.Google Scholar
9. Elandaloussi, E. H. and Spangler, C. W., Polym. Prep. 39(2), p. 1055 (1998).Google Scholar
10. Spangler, C. W., in Handbook of Conducting Polymers, 2nd ed., edited by Skotheim, T., Elsenbaumer, R. and Reynolds, J., Marcel Dekker, Inc., 1998, pp. 743763.Google Scholar
11. Cumpston, B. H., Ehrlich, J. E., Erskine, L. L., Heikal, A. A., Hu, Z.-Y., Lee, I.-Y. S., Levin, M. D., Marder, S. R., McCord, D. J., Perry, J. W., Rockel, H., Rumi, M. and Wu, X.-L., Mat.Res. Soc. Symp. Proc. 488, p. 217 (1998).Google Scholar
12. Twieg, R. J., Burland, D. M., Hedrick, J. L., Lee, V. Y., Miller, R. D., Moylan, C. R., Volksen, W. and Walsh, C. A., Mat. Res. Soc. Symp. Proc. 328, p. 421 (1994).Google Scholar
13. Elandaloussi, E. H., Spangler, C. W., Dirk, C., Casstevens, M., Kumar, D. and Burzynski, R., Mat. Res. Soc. Symp. Proc. 561, p. 63 (1999).Google Scholar
14. Spangler, C. W., Elandaloussi, E. H., M. K. Casstevens Kumar, D. N., Weibel, J. F. and Burzynski, R., Proc. SPIE 3798, p. 117 (1999).Google Scholar
15. Sonnenberg, W., Hyfield, A., Short, K., Spangler, L. and Spangler, C., Mat. Res. Soc. Symp.Proc. (submitted).Google Scholar