Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:33:04.299Z Has data issue: false hasContentIssue false

Optical Investigation of the Band Offset of CdxZn1−xTe /ZnTe and ZnSexTe1−x/ZnTe Superlattices

Published online by Cambridge University Press:  28 February 2011

Y. Rajakarunanayake
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125
M. C. Phillips
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125
J. O. Mccaldin
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125
D. H. Chow
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125
D. A. Collins
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125
T. C. Mcgill
Affiliation:
T. J. Watson Sr. Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

We have analyzed photoluminescence spectra from CdxZnl−xTe /ZnTe and ZnSexTel−x/ZnTe strained layer superlattices grown by MBE, and obtained the band offsets by fitting to theory. We find that the valence band offset of the CdTe/ZnTe system is quite small (-50± 160 meV). In CdxZnl−xTe /ZnTe superlattices, the electrons and heavy holes are confined in the CdxZn1−xTe layers (type I), while the light holes are confined in the ZnTe layers (type II). On the other hand, the photoluminescence data from the ZnSexTe1−x /ZnTe superlattices suggest that the band alignment is type II, with a large valence band offset (−907 ± 120 meV). We also investigated the band bowing in the ZnSexTel−x alloys by optical spectroscopy, and found that there is only a small component of bowing in the valence band, while most of the bowing occurs in the conduction band. Based on our results for band alignments, we evaluate the prospects for minority carrier injection in wide bandgap heterostructures based on ZnSe, ZnTe, and CdTe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kobayashi, M., Mino, N., Konagai, M., and Takahashi, K., Surf Sci. 174, 550 (1986).Google Scholar
[2] Kobayashi, M., Mino, N., Katagiri, H., Kimura, R., Konagai, M., and Takahashi, K., Appl. Phys. Lett. 48, 296 (1986).Google Scholar
[3] Kroger, F. A. in, The Chemistry of Imperfect Crystals, (North Holland, Amsterdam, 1973).Google Scholar
[4] Yasuda, T., Mitsuishi, I., and Kukimoto, H., Appl.Phys.Lett. 52, 57 (1987).Google Scholar
[5] Yao, T. in, The Technology and Physics of Molecular Beam Epitaxy, (Plenum Press, New York, 1985).Google Scholar
[6] Mitsuhashi, H., Mitsuishi, I., and Kukimoto, H., J. Cryst. Growth 77, 219 (1986).Google Scholar
[7] McCaldin, J. O., J. Vac. Sci. Technol, to be published, (1990).Google Scholar
[8] Konagai, M., Dosho, S., Takemura, Y., Teraguchi, N., Kimura, R., and Takahashi, K. in, Growth and Optical Properties of Wide-Gap 1l-VI Low-Dimensional Semiconductors, edited by McGill, T. C., Sotomayor Tones, C. M. and Gebhardt, W. B., (Plenum, New York, 1989).Google Scholar
[9] McCaldin, J. O. in, Growth and Optical Properties of Wide-Gap JI-VI Low-Dimensional Semiconductors, edited by McGill, T. C., Sotomayor Torres, C. M. and Gebhardt, W. B., (Plenum, New York, 1989).Google Scholar
[10] Miles, R. H., McCaldin, J. O., and McGill, T. C., J. Cryst. Growth 85, 188 (1987).Google Scholar
[11] Rajakarunanayake, Y., Cole, B. H., McCaldin, J. O., Chow, D. H., Söderstrom, J. R. and McGill, T. C., Appl. Phys. Lett. 55, 1217 (1989).Google Scholar
[12] Phillips, M. C., Rajakarunanayake, Y., McCaldin, J. O., Chow, D. H., Collins, D. A., and McGill, T. C., to be published, (1990).Google Scholar
[13] Miles, R. H. in, Structural and Optical Properties of Strained-layer Superlattices, (Thesis, California Institute of Technology, 1988).Google Scholar
[14] Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
[15] Miles, R. H., McGill, T. C., Sivananthan, S., Chu, X., and Faurie, J. P., J. Vac. Sci. Technol. B5, 1263, (1987).Google Scholar
[16] Harrison, W. A. and Tersoff, J., J. Vac. Sci. Technol. B4, 1068 (1986).Google Scholar
[17] Katnani, A. D. and Margaritondo, G., J. Appl. Phys. 54, 2522 (1983).Google Scholar
[18] Harrison, W. A., J. Vac. Sci. Technol. 14, 1016 (1977).Google Scholar
[19] Kobayashi, M., Mino, N., Katagiri, H., Kimura, R., Konagai, M., and Takahashi, K., J. Appl. Phys. 60, 773 (1986).Google Scholar
[20] Rajakarunanayake, Y. and McGill, T. C., Phys. Rev. B. 37, 10212 (1988).Google Scholar
[21] Rajakarunanayake, Y. and McGill, T. C., J. Vac. Sci. Technol. B6, 1354 (1988).Google Scholar
[22] Shih, C. K., Wahi, A. K., Lindau, I. and Spicer, W. E., J. Vac. Sci. Technol. A6, 2640 (1988).Google Scholar
[23] Bir, G. L. and Pikus, G. E. in, Symmetry and Strain Induced Effects in Semiconductors, (Keter, Jerusalem, 1974).Google Scholar