Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:34:00.007Z Has data issue: false hasContentIssue false

Optical Interactions and Photoluminescence Properties of Wide-Bandgap Nanocrystallites

Published online by Cambridge University Press:  01 February 2011

Leah Bergman
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Xiang-Bai Chen
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Jesse Huso
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Althea Walker
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
John L. Morrison
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Heather Hoeck
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Margaret K. Penner
Affiliation:
Department of Physics, University of Idaho, Moscow, ID 83844–0903
Andrew P. Purdy
Affiliation:
US Naval Research Laboratory, Chemistry Division, Washington DC 20375
Get access

Abstract

The UV-photoluminescence (PL) properties of GaN and ZnO nanocrystallites and nanocrystallite ensembles were studied utilizing micro-photoluminescence. We address the origin of the light emissions of the nanocrystallite as to whether it is due a bandgap or excitonic recombination process. The other topic presented here focuses on the interaction of the laser with a collective of crystallites; we address the phenomena of intensity saturation at a high density of laser excitations as well as the impact of the vacuum state on the PL characteristics. Our analysis indicates that the PL of both GaN and ZnO nanocrysallites is excitonic-like and very similar to the behavior of the free exciton in bulk materials. Additionally, we attribute the intensity saturation of GaN and ZnO to the laser heating and heat trapping which takes place in the enclosure of the nanocrystallite ensemble. In vacuum the PL energy was found to exhibit a strong PL energy redshift relative to the PL in air. We attribute the observed shift to a thermal effect and analyze it in terms of the conditions enabling a convective cooling in the ensemble: the mean free path of air in atmospheric pressure and in vacuum relative to the interparticle separation inside the ensemble.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Semiconductors and semimetals Vol. 57, edited by Pankove, J. I. and Moustakas, T. D. (Academic, San Diego, 1999).Google Scholar
(b) Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
2. Van Dijken, A., Meulenkamp, E.A., Vanmakelbergh, D., and Meijerink, A., J. of Luminesc. 90, 123 (2000).Google Scholar
3. Look, D.C., Mater. Sci. Engin. B 80, 383 (2001).Google Scholar
4. Nause, J.E., III-Vs Review 12 (4), 2831 (1999).Google Scholar
5. Minami, T., MRS Bulletin 25 (8), 38 (2000).Google Scholar
6. Nuruddin, A. and Abelson, J.R., Thin Solid Films 394, 49 (2001).Google Scholar
7. Purdy, A. P., Chem. Matter. 11, 1648 (1999).Google Scholar
8. a) Bergman, L., Chen, X. B., Purdy, A., Appl. Phys. Lett. 83, 764 (2003).Google Scholar
b) Bergman, L., et. al. MRS Proceedings V. 776, Q1.1 (spring 2003)Google Scholar
9. Han, W. -Q., and Zettl, A., Appl. Phys. Lett. 81, 5051 (2002).Google Scholar
10. Lee, M. W., Twu, H. Z., Chen, C. -C., and Chen, C. -H., Appl. Phys. Lett. 79, 3693 (2001).Google Scholar
11. Duan, X. and Lieber, C. M., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
12. Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
13. Wang, L. and Giles, N.C., J. Appl. Phys. 94, 973 (2003).Google Scholar
14. Jin, Shirong, Zheng, Yanla, and Li, Aizhen, J. Appl. Phys. 82, 3870 (1997).Google Scholar
15. Taguchi, T., Shirafuji, J., and Inuishi, Y., Phys. Status Solidi B 68, 727 (1975).Google Scholar
16. Cooper, D. E., Bajaj, J., and Newmann, P. R., J. Cryst. Growth 86, 544 (1988).Google Scholar
17. Feng, Z. C., Mascarenhas, A., and Choyke, W. J., J. Lumin. 35, 329 (1986).Google Scholar
18. Kim, Q. and Langer, D. W., Phys. Status Solidi B 122, 263 (1984).Google Scholar
19. Schmidt, T., Lischka, K., and Zulehner, W., Phys. Rev. B 45, 8989 (1992).Google Scholar
20. Fouquet, J. E. and Siegman, A. E., Appl. Phys. Lett. 46, 280 (1984).Google Scholar
21. Wagner, J., Phys. Rev. B29, 2002 (1984).Google Scholar
22. Forster, Th., “Excitation Transfer” in Comparative Effects of Radiation, Pp. 300 (Wiley and Sons, New York 1960).Google Scholar
23. Yoshikawa, M., Kunzer, M., Wagner, J., Obloh, H., Schlotter, P., Schmidt, R., Herres, N., and Kaufmann, U., J. Appl. Phys. 86, 4400 (1999).Google Scholar
24. Lee, I-H., Lee, J.J., Kung, P., Sanchez, F.J., and Razeghi, M., Appl. Phys. Lett. 74, 102 (1999).Google Scholar
25. Vina, L., Logothetidis, S., and Cardona, M., Phys. Rev. B30, 1979 (1984).Google Scholar
26. Bergman, L., Dutta, M., Stroscio, M.A., Komirenko, S.M., Nemanich, R. J., Eiting, C.J., Lambert, D.J.H., Kwon, H.K., and Dupuis, R. D., Appl. Phys. Lett. 76, 1969 (2000).Google Scholar
27. Bergman, Leah, Dutta, Mitra, and Nemanich, Robert J.. “Raman Analysis of Wide Band Gap Nitrides; Film, Crystals, and Superlatices”, In Raman Scattering in Materials Science Science p. 273 (Editors: Merlin, R. and Weber, W.H., Springer Verlag 2000).Google Scholar
28. Liu, M.S., Bursill, L.A., Prawer, S., Nugent, K.W., Tong, Y.Z., and Zhang, G.Y., Appl. Phys. Lett. 74, 3125 (1999).Google Scholar
29. Zhou, H., Alves, H., Hofmann, D.M., Kriegseis, W., Meyer, B.K., Kaczmarczyk, G., and Hoffmann, A., Appl. Phys. Lett. 80, 210 (2002).Google Scholar
30. Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Vigt, J.A., and Gnade, B.E., J. Appl. Phys. 79, 7983, (1996).Google Scholar
31. Roth, Alexander, Vacuum technology (North-Holland, New York, 1976), p. 37 Google Scholar
32. CRC Handbook of Chemistry and Physics, edited by Lide, David R. (CRC Press, 78th ed., 19971998).Google Scholar
33. Muth, J.F., Lee, J.H., Shmagin, I.K., Kolbas, R.M., Casey, H.C., Keller, B.P., Mishra, U.K., and Den Baars, S.P., Appl. Phys. Lett. 71, 2572 (1997).Google Scholar