Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T11:43:44.829Z Has data issue: false hasContentIssue false

Optical Characterization of Shock-Induced Chemistry in the Explosive Nitromethane using DFT and Time-Dependent DFT

Published online by Cambridge University Press:  17 July 2013

Lenson A. Pellouchoud
Affiliation:
Stanford University, Materials Science & Engineering, 496 Lomita Mall, Stanford, CA 94024, U.S.A.
Evan J. Reed
Affiliation:
Stanford University, Materials Science & Engineering, 496 Lomita Mall, Stanford, CA 94024, U.S.A.
Get access

Abstract

A thorough understanding of chemistry in extreme environments is a major challenge in experimental as well as theoretical work. With continual improvements in ultrafast optical measurements and new methods for simulations of shock-induced chemistry for timescales approaching a nanosecond, the opportunity is beginning to exist to connect experiments with simulations on the same timescale. In the present work, we compute the optical properties of the energetic material nitromethane (CH3NO2) for the first 100 picoseconds behind the detonation shock front in a molecular dynamics simulation. We compute optical spectra using the Kubo-Greenwood approach with DFT Kohn-Sham electronic states and compare with spectra computed by linear-response time-dependent density functional theory (TDDFT). The latter typically yields more accurate spectra for molecular systems. At optical wavelengths, the TDDFT method offers a correction of up to 25% in the real part of conductivity relative to the Kubo-Greenwood calculation. We also study the effects of thermal electronic excitations on the calculated spectra, and find no discernible change at optical wavelengths. In all of our calculations, we observe a non-monotonic change over time in the entire spectrum of optical properties as decomposition products evolve. The most optically relevant decomposition products are found to be NO, CNO, CNOH, water, and larger transient molecules. In particular, the disappearance of transient NO and CNO molecules (about 90 picoseconds behind the shock front) is coincident with a substantial decrease in conductivity across the optical spectrum.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dlott, D. D. Annu Rev Phys Chem 2011, 62, 575597.CrossRefGoogle Scholar
Qi, T. T.; Reed, E. J. J Phys Chem A 2012, 116, 1045110459.CrossRefGoogle Scholar
Reed, E. J. The Journal of Physical Chemistry C 2012, 116, 22052211.CrossRefGoogle Scholar
Reed, E. J.; Fried, L. E.; Joannopoulos, J. D. Physical Review Letters 2003, 90.Google Scholar
Reed, E. J.; Fried, L. E.; Manaa, M. R.; Joannopoulos, J. D. A Multi-Scale Approach to Molecular Dynamics Simulations of Shock Waves in Chemistry at Extreme Conditions, In Elsevier: New York, 2005; pp. 297326.Google Scholar
Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 72607268.CrossRefGoogle Scholar
Mazevet, S.; Kress, J. D.; Collins, L. A.; Blottiau, P. Phys. Rev. B 2003, 67.CrossRefGoogle Scholar
Clerouin, J.; Laudernet, Y.; Recoules, V.; Mazevet, S. Phys. Rev. B 2005, 72.CrossRefGoogle Scholar
Clérouin, J.; Mazevet, S. Journal de Physique IV (Proceedings) 2006, 133, 10711075.CrossRefGoogle Scholar
Laudernet, Y.; Clerouin, J.; Mazevet, S. Phys. Rev. B 2004, 70.CrossRefGoogle Scholar
Li, D.; Zhang, P.; Yan, J. Phys. Rev. B 2011, 84.Google Scholar
Zhang, Y.; Wang, C.; Zheng, F.; Zhang, P. Journal of Applied Physics 2012, 112, 033501.CrossRefGoogle Scholar
Casida, M. E. J Mol Struc-Theochem 2009, 914, 318.CrossRefGoogle Scholar
Winey, J. M.; Gupta, Y. M. J Phys Chem B 1997, 101, 1073310743.CrossRefGoogle Scholar
Winey, J. M.; Gupta, Y. M. J Phys Chem A 1997, 101, 93339340.CrossRefGoogle Scholar
Flicker, W. M.; Mosher, O. A.; Kuppermann, A. Chemical Physics Letters 1979, 60, 518522.CrossRefGoogle Scholar
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., et al. . J Phys-Condens Mat 2009, 21.CrossRefGoogle Scholar
Gonze, X.; Amadon, B.; Anglade, P. M.; Beuken, J. M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M., et al. . Comput. Phys. Commun. 2009, 180, 25822615.CrossRefGoogle Scholar
Gonze, X.; Rignanese, G. M.; Verstraete, M.; Beuken, J. M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikami, M., et al. . Z Kristallogr 2005, 220, 558562.Google Scholar
Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 50485079.CrossRefGoogle Scholar
Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785789.CrossRefGoogle Scholar
Becke, A. D. Phys. Rev. A 1988, 38, 30983100.CrossRefGoogle Scholar
Sharma, S.; Ambrosch-Draxl, C. Phys Scripta 2004, T109, 128134.CrossRefGoogle Scholar
Saad, Y. Siam J Numer Anal 1982, 19, 485506.CrossRefGoogle Scholar
Walker, B.; Saitta, A.; Gebauer, R.; Baroni, S. Physical Review Letters 2006, 96.CrossRefGoogle Scholar
Osman, Barıs, Malcıoglu, R. G., Dario, Rocca, and Stefano, Baroni.Google Scholar
Rocca, D.; Bai, Z.; Li, R. C.; Galli, G. J Chem Phys 2012, 136, 034111.CrossRefGoogle Scholar
Rocca, D.; Gebauer, R.; Saad, Y.; Baroni, S. J Chem Phys 2008, 128, 154105.CrossRefGoogle Scholar
Goldman, N.; Reed, E. J.; Fried, L. E.; Kuo, I. F. W.; Maiti, A. Nat Chem 2010, 2, 949954.CrossRefGoogle Scholar
Sanchezportal, D.; Artacho, E.; Soler, J. M. Solid State Commun 1995, 95, 685690.CrossRefGoogle Scholar
Bolme, C. A. Single shot dynamic ellipsometry measurements of laser-driven shock waves. Ph.D. Thesis, Massachusetts Institute of Technology, 2008.CrossRefGoogle Scholar
Bolme, C. A.; McGrane, S. D.; Moore, D. S.; Funk, D. J. Journal of Applied Physics 2007, 102.CrossRefGoogle Scholar
Armstrong, M. R.; Crowhurst, J. C.; Bastea, S.; Zaug, J. M. Journal of Applied Physics 2010, 108.CrossRefGoogle Scholar
Dang, N. C.; Bolme, C. A.; Moore, D. S.; McGrane, S. D. J Phys Chem A 2012, 116, 1030110309.CrossRefGoogle Scholar
McGrane, S. D.; Bolme, C. A.; Whitley, V. H.; Moore, D. S. International Symposium on High Power Laser Ablation 2010 2010, 1278, 392400.Google Scholar
McGrane, S. D.; Moore, D. S.; Whitley, V. H.; Bolme, C. A.; Eakins, D. E. Shock Compression of Condensed Matter - 2009, Pts 1 and 2 2009, 1195, 13011304.Google Scholar