Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:31:34.341Z Has data issue: false hasContentIssue false

Optical Characterization of Ion Implanted SIC

Published online by Cambridge University Press:  10 February 2011

E. K. Williams
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
D. K. Hensley
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal, AL 35762, USA
Get access

Abstract

We present the preliminary results of our investigation of producing nanoclusters of gold and tin in 6H-SiC. In this work we study the changes in the linear optical properties as a function of ion fluence and post-implantation heat treatment. The optical absorption is complemented by micro-Raman spectroscopy to investigate lattice damage and recovery. We implanted 1.0 MeV Au and 120 and 160 keV Sn into the Si face of SiC at 30 or 500°C followed by annealing at various temperatures. Using optical absorption spectrophotometry, we determined the location of the absorption band for each metal nanocluster in SiC. Elevated temperature implantation greatly reduced optical absorption due to ion implantation induced defects. Using Mie theory, we determined the index of refraction in the implanted volume and estimated the size of the Au nanoclusters as 5 nm in diameter. Rutherford backscattering analysis of the oxide layer grown during annealing showed an increase of 20 percent in on the implanted side. It was found that the Au clusters occurred only in the oxide layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arnold, G. W., J. Appl. Phys. 46, p. 4466 (1975).Google Scholar
2. White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. and Osborne, D. H., in (Mater. Res. Soc. Proc. 316, Pittsburg, PA, 1994) p. 499.Google Scholar
3. Williams, E. K., Ila, D., Darwish, A., Poker, D. B., Sarkisov, S. S., Curley, M. J., Wang, J- C., Svetchnikov, V. L., Zandbergen, H. W., Nucl. Instr. and Meth. in Phys. Res. B148, p. 1074 (1998).Google Scholar
4. Ila, D., Williams, E. K., Sarkisov, S., Smith, C. C., Poker, D. B., and Hensley, D. K., Nucl. Instr. and Meth. in Phys. Res. B141, p. 289 (1998).Google Scholar
5. Zimmerman, R. L., Ila, D., Williams, E. K., Poker, D. B., Hensley, D. K., Klatt, C., Kalbitzer, S., Nucl. Instr. and Meth. in Phys. Res. B148, p. 1064 (1998).Google Scholar
6. Fuchs, G., Abouchacra, G., Treilleux, M., Thévenard, P., and Serughetti, J., Nucl. Instr. And Meth. in Phys. Res. B32, p. 100 (1988),.Google Scholar
7. Abouchacra, G., Chassagne, G., and Serughetti, J., Radiation Effects 64, p. 189 (1982),.Google Scholar
8. Mie, G., Ann. Physik 25 (1908), p. 377.Google Scholar
9. Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 76th Edition, CRC Press, Boca Raton, 1987.Google Scholar
10. Townsend, P. D., Chandler, P. J., Zhang, L., Optical Effects of Ion Implantation, Cambridge University Press, Cambridge, 1994.Google Scholar
11. Tesmer, J. R. and Nastasi, M., Eds., Handbook of Modern Ion Beam Materials Analysis, MRS, Pittsburg, 1995.Google Scholar
12. Zeigler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
13. Pezoldt, J., Yankov, R. A., Werninghaus, T., Zahn, D.R.T., Fukarek, W., Teichert, G., Luebbe, M., Skorup, W., Diamond and Related Materials, 8, pp. 346351 (1999).Google Scholar
14. Evelyn, A. L., Ila, D., Zimmerman, R.L., Bhat, K., Poker, D. B., Hensley, D. K., Nucl. Inst. & Meth. B127, pp. 694697 (1997).Google Scholar