Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T02:31:06.872Z Has data issue: false hasContentIssue false

Optical and Electrical Properties of MBE Grown Cubic GaN/GaAs Epilayers Doped by Si

Published online by Cambridge University Press:  03 September 2012

D.J. As
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
A. Richter
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
J. Busch
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
B. Schöttker
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
M. Lübbers
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
J. Mimkes
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
D. Schikora
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
K. Lischka
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, [email protected]
W. Kriegseis
Affiliation:
Universität Giessen, I. Physik. Inst., Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
W. Burkhardt
Affiliation:
Universität Giessen, I. Physik. Inst., Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
B.K. Meyer
Affiliation:
Universität Giessen, I. Physik. Inst., Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
Get access

Abstract

Si-doping of cubic GaN epilayers grown by an rf plasma-assisted molecular beam epitaxy on semi-insulating GaAs (001) substrates is investigated by secondary ion mass spectroscopy (SIMS), photoluminescence (PL) and by Hall-effect measurements. SIMS measurements show a homogeneous incorporation of Si in cubic GaN epilayers up to concentrations of 5*1019 cm−3. PL shows a clear shift of the donor-acceptor emission to higher energies with increasing Si-doping. Above a Si-flux of 1*1011cm−2s−1 the near band edge lines merge to one broad band due to band gap renormalization and conduction band filling effects. The influence of the high dislocation density (≈1011cm−2) in c-GaN:Si on the electrical properties is reflected in the dependence of the electron mobility on the free carrier concentration. We find that dislocations in cubic GaN act as acceptors and are electrically active.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doverspike, K. and Pankove, J.I., in Semiconductors and Semimetals Vol. 50, 259 (1998)Google Scholar
2. Schubert, E.F., Goepfert, I.D., Grieshaber, W., Redwing, J.M., Appl. Phys. Lett. 71 (7), 921 (1997)Google Scholar
3. Iliopoulos, E., Doppalapudi, D., Ng, H.M., Moustakas, T.D., MRS Symp. Proc. Vol. 482, 655 (1998)Google Scholar
4. Zhang, X., Chua, S-J., Liu, W., Chong, K-B., J. of Cryst. Growth 189/190, 687 (1998)Google Scholar
5. Tang, H., Kim, W., Botchkarev, A., Popovici, G., Hamdani, F. and Morkoc, H., Solid-State Electronics 42 (5), 839 (1998)Google Scholar
6. Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., Moustakas, T.D., J. Appl. Phys. 83 (7), 3656 (1998)Google Scholar
7. Look, D.C., Sizelove, J.R., Phys. Rev. Lett. 82 (6), 1237 (1999)Google Scholar
8. Schikora, D., Hankeln, M., As, D.J., Lischka, K., Litz, T., Waag, A., Buhrow, T. and Henneberger, F., Phys. Rev. B 54 (12), R8381 (1996)Google Scholar
9. Souchiere, J.L., Binh, Vu Thien, Surface Science 168, 52 (1986)Google Scholar
10. As, D.J., Schmilgus, F., Wang, C., Schöttker, B., Schikora, D., and Lischka, K., Appl. Phys. Lett. 70 (10), 1311 (1997)Google Scholar
11. Hopfield, J.J., Thomas, D.G., Gershenzon, M., Phys. Rev. Lett. 10 (5), 162 (1963)Google Scholar
12. De-Sheng, J., Makita, Y., Ploog, K., Queisser, H.J., J. Appl. Phys. 53 (2), 999 (1982)Google Scholar
13. Abramov, A.P., Abramova, I.N., Verbin, S. Yu., Gerlovin, I. Ya., Grigorév, S.R., Ignatév, I.V., Karimov, O.Z., Novikov, A.B., and Novikov, B.N., Semiconductors 27 (7), 647 (1993)Google Scholar
14. Burstein, E., Phys. Rev. 83, 632 (1954)Google Scholar
15. Schubert, E.F., Doping in III-V Semiconductors, Cambridge University Press (1993) p.38 Google Scholar
16. Casey, H.C. Jr., and Stern, F., J. Appl. Phys. 47, 631 (1976)Google Scholar
17. Yoshikawa, M., Kunzer, M., Wagner, J., Obloh, H., Schlotter, P., Schmitt, R., Herres, N., and Kaufmann, U., J. Appl. Phys. 86 (8), 4400 (1999)Google Scholar
18. Fernandez, J.R.L., Tabata, A., Leite, J.R., Lima, A.P., Chitta, V.A., Abramov, E., As, D.J., Schikora, D., Lischka, K., MRS Symp. Proc. Vol 595 (2000), W3.40 Google Scholar
19. Look, D.C., in Electrical Characterization of GaAs Materials and Devices, Wiley, Chichester (1989), p.67 Google Scholar
20. As, D.J., Lischka, K., phys. stat. sol. (a) 176, 475 (1999)Google Scholar
21. Portmann, J., Haug, C., Brenn, R., Frey, T., B. Schöttker, As, D.J., Nucl. Instr. and Meth. in Phys. Res. B 155, 489 (1999)Google Scholar