Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:57:19.174Z Has data issue: false hasContentIssue false

Onset of Exchange Anisotropy in Epitaxial fct-Cobalt(001)/fct-Manganese(001) Bilayers

Published online by Cambridge University Press:  01 February 2011

Jürgen T. Kohlhepp
Affiliation:
[email protected], Eindhoven University of Technology, Applied Physics, P.O. Box 513, Eindhoven, N/A, 5600 MB Eindhoven, Netherlands, +31 40 2474325, +31 40 2475724
Harm Wieldraaijer
Affiliation:
[email protected], Eindhoven University of Technology, Department of Applied Physics and center for NanoMaterials (cNM), P.O. Box 513, 5600 MB Eindhoven, N/A, N/A, Netherlands
Wim J. M. de Jonge
Affiliation:
[email protected], Eindhoven University of Technology, Department of Applied Physics and center for NanoMaterials (cNM), P.O. Box 513, 5600 MB Eindhoven, N/A, N/A, Netherlands
Get access

Abstract

Manganese (Mn) grows in a meta-stable expanded (c/a > 1) face-centered-tetragonal (fct) phase on thin fct-Co(001) template films. For small Mn thicknesses a close to a layer-by-layer growth is observed. Antiferromagnetism (AFM) of fct-Mn is evidenced by the observation of shifted magnetization loops antiparallel to the cooling field direction (negative bias) and enhanced coercive fields for Co/Mn bilayers. At low temperatures magnetic Co/Mn interface exchange interactions are detected for nominal Mn thicknesses as low as 1.3 monolayer (ML), indicating the onset of AFM in 2 ML thick Mn islands. However, between 2 ML and 5 ML Mn a positive bias of the magnetization loops is observed in a certain temperature range below the blocking temperature (TB) of the films. This peculiar behavior is explained by the dependence of TB on both the local Mn ML thickness and the Mn island size, leading to a unidirectional coercivity enhancement in a temperature range where both blocked and unblocked regions are coexisting in the Mn layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nogués, J. and Schuller, I. K., J. Magn. Magn. Mater. 192 203 (1999).Google Scholar
2 Berkowitz, A. E. and Takano, K., J. Magn. Magn. Mater. 200 552 (1999).Google Scholar
3 Nogués, J., Sort, J., Langlais, V., Skumryev, V., Surinach, S., Munoz, J. S., and Baró, M. D., Physics Reports 422 65 (2005).Google Scholar
4 Hafner, J. and Spiŝàk, D., Phys. Rev. B. 72 144420 (2005).Google Scholar
5 Kohlhepp, J. T. and Jonge, W. J. M. de, submitted for publication.Google Scholar
6 Schmid, A. K and Kirschner, J., Ultramicroscopy 42 483 (1992).Google Scholar
7 Wieldraaijer, H., Jonge, W. J. M. de, and Kohlhepp, J. T., Phys. Rev. Lett. 93 177205 (2004).Google Scholar
8 Wieldraaijer, H., Jonge, W. J. M. de, and Kohlhepp, J. T., Phys. Rev. B. 72 155409 (2005).Google Scholar
9 O'Brien, W. L. and Tonner, B. P., Phys. Rev. B. 50 2963 (1994).Google Scholar
10 Leighton, C., Nogués, J., Jönsson-Åkerman, B. J., and Schuller, I. K., Phys. Rev. Lett. 84 3466 (2000).Google Scholar
11 Gredig, T., Krivorotov, I. N., Eames, P., and Dahlberg, E. D., Appl. Phys. Lett. 81, 1270 (2002).Google Scholar