Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:58:03.507Z Has data issue: false hasContentIssue false

One-step Solvothermal Synthesis and Characterization of BaTiO3 Nanoparticles

Published online by Cambridge University Press:  15 February 2011

Helen Reveron
Affiliation:
Catherine Elissalde and Francois Cansell Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 Av. du Dr. Schweitzer, 33608 Pessac, France.
Cyril Aymonier
Affiliation:
Catherine Elissalde and Francois Cansell Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 Av. du Dr. Schweitzer, 33608 Pessac, France.
Anne Loppinet-Serani
Affiliation:
Catherine Elissalde and Francois Cansell Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 Av. du Dr. Schweitzer, 33608 Pessac, France.
Mario Maglione
Affiliation:
Catherine Elissalde and Francois Cansell Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 Av. du Dr. Schweitzer, 33608 Pessac, France.
Catherine Elissalde
Affiliation:
Catherine Elissalde and Francois Cansell Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 Av. du Dr. Schweitzer, 33608 Pessac, France.
Francois Cansell
Affiliation:
Catherine Elissalde and Francois Cansell Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), 87 Av. du Dr. Schweitzer, 33608 Pessac, France.
Get access

Abstract

Using a continuous-flow reactor, barium titanate (BaTiO3) nanoparticles have been successfully synthesized at temperatures ranging from 150 to 380°C and 16 MPa. Ba-Ti alkoxide solutions were used as precursors and water as reagent. The influence of synthesis parameters on the powder characteristics was investigated. Results showed that the purity, crystallinity and stoichiometry of the as-synthesized BaTiO3 powder depend mainly on the reactor temperature, quantity of water injected into the reactor and the Ba:Ti molar ratio of alkoxide solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pessey, V., Garriga, R., Weill, F., Chevalier, B., Etourneau, J. and Cansell, F., J. Mater. Chem. 12, 958 (2002).Google Scholar
2 Desmoulins-Krawiec, S., Aymonier, C., Loppinet-Serani, A., Weill, F., Gorsse, S., Etourneau, J. and Cansell, F., J. Mater. Chem. 14, 228 (2004).Google Scholar
3 Young, D., and Lee, B., J. Ceram. Process. Res., 3, 41, (2002).Google Scholar
4 Lee, S., Park, T., Choi, G., Koo, K. and Kim, W., Mater. Chem. and Phys. 82, 742 (2003).Google Scholar
5 Arima, M., Kakihana, M., Nakamura, Y., Yashima, M. and Yoshimura, M., J. Am. Ceram. Soc., 79, 2847 (1996).Google Scholar
6 Chen, J., Shen, Z., Liu, F., Liu, X. and Yun, J., Scripta Materialia, 49, 509 (2003).Google Scholar
7 Haizanov, O., Harizanova, A. and Ivanova, T., Mater. Sci. Eng, B106, 191 (2004).Google Scholar
8 Veith, M., Mathur, S., Lecerf, N., Huch, V., Decker, T., Beck, H., Eiser, W. and Haberkorn, R., J. Sol-Gel Sci. Tech., 15, 145 (2000).Google Scholar
9 Kumazawa, H. and Masuda, K., Thin Solid Films, 353, 144 (1999).Google Scholar
10 Cho, J., Miyazawa, K. and Kuwabara, M., J. Sol-Gel Sci. Tech., 23, 9 (2002).Google Scholar
11 Shimooka, H. and Kuwabara, M., J. Am. Ceram. Soc., 79, 2983 (1996).Google Scholar
12 Xu, H., Gao, L. and Guo, J., J. Am. Ceram. Soc., 85, 727 (2002).Google Scholar
13 Xu, H. and Gao, J., J. Eur. Ceram. Soc., 22, 1163 (2002).Google Scholar
14 Xu, H. and Gao, L., Mater. Lett., 58, 1582 (2004).Google Scholar
15 Xu, H. and Gao, L., J. Am. Ceram. Soc., 86, 203 (2003).Google Scholar
16 Qi, L., Lee, B., Badheka, P., Yoon, D., Samuels, W. and Exarhos, G., J. Eur. Ceram. Soc., 24, 3553 (2004).Google Scholar
17 Ciftci, E., Rahaman, M. and Shumsky, M., J. Mater. Sci., 36, 4875 (2001).Google Scholar
18 Chen, H. and Chen, Y., Ind. Eng. Chem. Res., 42, 473 (2003).Google Scholar
19 Hu, M., Kurian, V., Payzant, E., Rawn, C. and Hint, R, Powd.Tech., 110, 2 (2000).Google Scholar
20 Chen, K. and Chen, Y., Powd. Tech., 141, 69 (2004).Google Scholar
21 Wu, M., Long, J., Wang, G., Huang, A. and Luo, Y., J. Am. Ceram. Soc., 82, 3254 (1999).Google Scholar
22 Lee, J., Won, W., Kim, T. and Kim, H., J. Mater. Sci. 36, 4271 (2000).Google Scholar
23 Chen, D. and Jiao, K., J. Am. Ceram. Soc., 83, 2637 (2000).Google Scholar
24 Bocquet, J., Chhor, K. and Pommier, C., Mater. Chem. Phys., 57, 273 (1999).Google Scholar
25 Suzuki, K. and Kijima, K., Mater. Lett., 58, 1650, (2004).Google Scholar
26 Hung, K., Yang, W. and Huang, C., J. Eur. Ceram. Soc., 23, 1901 (2003).Google Scholar
27 Moon, J., Suvaci, E., Li, T., Constantino, S. and Adair, J., J. Eur. Ceram. Soc., 22, 809 (2002).Google Scholar
28 Novak, Z., Knez, Z., Ban, I. and Drofenik, M., J. Supercrit. Fluids, 19, 209 (2001).Google Scholar
29 Shi, E., Xia, C., Zhong, W., Wang, B. and Feng, C., J. Am. Ceram. Soc., 80, 1567 (1997).Google Scholar
30 Yoon, D., Lee, B, Badheka, P. and Wang, X, J. Mater. Sci., 14, 165 (2003).Google Scholar
31 Neubrand, A., Reinhard, L, J. Am. Ceram. Soc., 83, 860 (2000).Google Scholar
32 Paik, U., Lee, S., Hackley, V., J. Am. Ceram. Soc., 86, 1662 (2003).Google Scholar
33 Hennings, D., Metzmacher, C. and Schreinemacher, B., J. Am. Ceram. Soc., 84, 179 (2001).Google Scholar
34 Yoon, D. and Lee, B.; J. Ceram. Process. Res., 3, 41 (2002).Google Scholar
35 Blanco-Lopez, M., Rand, B. and Riley, F., J. Cera. Soc. Jp., 104, 383 (1996)Google Scholar