Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:22:55.123Z Has data issue: false hasContentIssue false

One and Two-Dimensional Pattern Formation on Ion Sputtered Silicon

Published online by Cambridge University Press:  01 February 2011

Ari-David Brown
Affiliation:
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, U.S.A. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, U.S.A.
H. Bola George
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Michael J. Aziz
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Jonah Erlebacher
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, U.S.A.
Get access

Abstract

The evolution of surface morphology during ion beam erosion of Si(111) at glancing ion incidence (60° from normal, 500 eV Ar+, 0.75 mA/cm2 collimated beam current) was studied over a temperature range of 500–730° Celsius. Keeping ion flux, incident angle, and energy fixed, it was found that one-dimensional sputter ripples with wavevector oriented perpendicular to the projected ion beam direction form during sputtering at the lower end of the temperature range. For temperatures above approximately 690° Celsius, growth modes both parallel and perpendicular to the projected ion beam direction contribute to the surface morphological evolution. This effect leads to the formation of bumps (“dots”) with nearly rectangular symmetry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasiliu, F., Teodorescu, I. A., and Glodeanu, F., J. Mater. Sci. 10, 399 (1975).Google Scholar
2. Rusponi, S., Constantini, G., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 81 4184 (1998).Google Scholar
3. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M.B., Floro, J. A., Phys. Rev. Lett. 82, 2330 (1999).Google Scholar
4. Navez, M., Sella, C., and Chaperot, D., C. R. Acad. Sci. 254, 240 (1962).Google Scholar
5. Chason, E., Mayer, T. M., Kellerman, B. K., McIlroy, D. T., and Howard, A. J., Phys. Rev. Lett. 72, 3040 (1994).Google Scholar
6. Chini, T.K., Okuyama, F., Tanemura, M., and Nordlund, K., Phys. Rev. B 67, 205403 (2003).Google Scholar
7. Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A., and Hartnagel, H. L., Science 285, 1551 (1999).Google Scholar
8. Gago, R., Vazquez, L., Cuerno, R., Varela, M., Ballesteros, C., Albella, J. M., Appl. Phys. Lett. 78, 3316 (2001).Google Scholar
9. Frost, F., Schindler, A., and Bigl, F., Phys. Rev. Lett., 85, 4116 (2000).Google Scholar
10. Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar
11. Sigmund, P., J. Mater. Sci. 8, 1545 (1973).Google Scholar
12. Makeev, M. A. and Barabasi, A.–L., Appl. Phys. Lett. 71, 2800 (1997).Google Scholar
13. Umbach, C. C., Headrick, R. L., and Chang, K.–C., Phys. Rev. Lett. 87, 246104 (2001).Google Scholar
14. Carter, G. and Vishnyakov, V., Phys. Rev. B 54, 17647 (1996).Google Scholar
15. Chason, E., Sinclair, M. B., Floro, J. A., Hunter, J. A., and Hwang, R. Q., Appl. Phys. Lett, 72, 3276 (1997).Google Scholar
16. Erlebacher, J., Aziz, M. J., Chason, E., Sinclair, M. B., and Floro, J. A., J. Vac. Sci. Tech. A 18, 115 (2000).Google Scholar
17. Jeong, H. –C. and Williams, E. D., Surf. Sci. Rep. 34, 171 (1999).Google Scholar