Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T15:02:30.998Z Has data issue: false hasContentIssue false

On the Thermoelectric Properties of Layered Cobaltates

Published online by Cambridge University Press:  01 February 2011

Qiang Li*
Affiliation:
[email protected], Brookhaven National Laboratory, Condensed Matter Physics and Materials Science, Bldg. 480, Upton, NY, 11973-5000, United States, 631-344-4490, 631-344-4071
Get access

Abstract

A study on the thermoelectric properties of layered cobaltates is presented, based on the dynamic mean field theory for strongly correlated electron systems. Electron correlation results in a crossover from coherent quasi-particle excitation at low temperature to incoherent excitation at high temperatures in cobaltates. With an extremely narrow quasi-particle bandwidth ( c ∼ 50 meV), the thermal destruction of Fermi-liquid occurs at the moderate crossover temperature T M (∼ 200 K), and suggests a new scaling for thermoelectric power S of cobaltates (SkT/hωcT/T M) at low temperatures. At high temperatures, the dominating incoherent excitation leads to a weak temperature dependent S, and electric resistivity ρ approaches the Mott-limit ha/e 2 ∼ a few mΩ·cm for cobaltates, where a is a lattice constant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y., and Uchokura, K., Phys. Rev. B, 56, 12685–87 (1997).Google Scholar
2. Valla, T., Johnson, P. D., Yusof, Z., Wells, B., Li, Qiang, Loureiro, S. M., Cava, R. J., Mikami, M., Mori, Y., Yoshimura, M., and Sasaki, T., Nature 417, 627630 (2002)Google Scholar
3. Valla, T., Fedorov, A. V., Johnson, P. D., Wells, B. O., Hulbert, S. L., Li, Qiang, Gu, G. D., and Koshizuka, N., Science. 285, 2110, (1999).Google Scholar
4. Takada, K., Sakural, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., and Sasaki, T., Nature 422, 53 (2003).Google Scholar
5. Orenstein, J. and Mills, A. J., Science 288 468 (2000).Google Scholar
6. Sera, M., Sato, H., Maki, M., Hiroi, M. and Kobayashi, N., Solid State Commun. 92 289 (1994).Google Scholar
7. Takahata, K., Iguchi, Y., Tanaka, D., Itoh, T., and Terasaki, I., Phys. Rev. B 61 12551 (2000).Google Scholar
8. CRC Handbook of Chemistry and Physics, edited by Lide, D. R., (80th edition, 19902000) CRC press, Boca Raton, p.12198 Google Scholar
9. Singh, D. J., Phys. Rev. B 61, 13397 (2000).Google Scholar
10. Lee, K.-W., Kunes, J., and Pickett, W. E., Phys. Rev. B 70, 045104 (2004)Google Scholar
11. Zhang, P., Luo, W., Crespi, V. H., Cohen, M. L., and Louie, S. G., Phys. Rev. B 70, 085108 (2004).Google Scholar
12. Zhang, P., Luo, W., Crespi, V. H., Cohen, M. L., and Louie, S. G., Phys. Rev. Lett. 93, 236402 (2004).Google Scholar
13. Wang, Y., Rogado, N. S., Cava, R. J., and Ong, N. P., Nature 423 425 (2003)Google Scholar
14. Yang, H.-B., Wang, S.-C., Sekharan, A. K. P., Matsui, H., Souma, S., Sato, T., Takahashi, T., Takeuchi, T., Campuzano, J. C., Jin, R., Sales, B. C., Mandrus, D., Wang, Z., and Ding, H., Phys. Rev. Lett. 92, 246403 (2004).Google Scholar
15. Hasan, M. Z., Chuang, Y.-D., Qian, D., Li, Y. W., Kong, Y., Kuprin, A., Fedorov, A. V., Kimmerling, R., Rotenberg, E., Rossnagel, K., Hussain, Z., Koh, H., Rogado, N. S., Foo, M. L., and Cava, R. J., Phys. Rev. Lett. 92, 246402 (2004).Google Scholar
16. Kotliar, G., Savrasov, S., Haule, K., Oudovenko, V., Parcollet, O., and Marianetti, C., Rev. of Mod. Phys. (in press)Google Scholar
17. Georges, A., Kotliar, G., Krauth, W., and Rozenberg, M. J., Rev. Mod. Phys. 68, 13. (1996).Google Scholar
18. Georges, A., and Kotliar, G., Phys. Rev. B 45, 6479 (1992).Google Scholar
19. Merino, J. and Mckenzie, R. H., Phys. Rev. B 61 7996 (2000).Google Scholar
20. Pruschke, Th., Cox, D. L., and Jarrell, M., Phys. Rev. B 47 3553 (1993).Google Scholar
21. Hu, Y. F., Si, W. D., Sutter, E., and Li, Q., Appl. Phys. Lett. 86, 082103 (2005).Google Scholar
22. Hu, Y. F., Si, W. D., Sutter, E., and Li, Q., Appl. Phys. Lett. 87, 171912 (2005).Google Scholar
23. Imada, M., Fujimori, A., and Tokura, Y., Rev. Mod. Phys. 70, 1039 (1998).Google Scholar
24. McKenzie, R. H., Comments Condes. Matter Phys. 18, 309 (1998).Google Scholar
25. Steward, G. R., Rev. Mod. Phys. 56, 755 (1984).Google Scholar
26. Limelette, P., Hardy, V., Auban-Senzier, P., Jérome, D., Flahaut, D., Hébert, S., Frésard, R., Simon, Ch., Noudem, J., and Maignan, A., Phys. Rev. B 71 233108 (2005).Google Scholar
27. Mikami, M., Yoshimura, M., Mor, Y., Sasaki, T., Funahashi, R., and Shikano, M., Jpn. J. Appl. Phys. 42 7383 (2003).Google Scholar
28. Pálsson, G. and Kotliar, G., Phys. Rev. Lett. 80, 4775 (1998).Google Scholar
29. Houghton, A., Read, N., and Won, H., Phys. Rev. B 35 5123 (1997).Google Scholar
30. Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S., Jpn. J. Appl. Phys. 39 L1127 (2000).Google Scholar
31. Mahan, G., Sales, B., and Sharp, J., Physics Today, March 1997, p. 42.Google Scholar