Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:57:48.062Z Has data issue: false hasContentIssue false

On the Relationship Between Grain Boundary Sliding and Intragranular Slip During Superplastic Deformation

Published online by Cambridge University Press:  10 February 2011

A. D. Sheikh-Ali
Affiliation:
Laboratory for Micromechanics of Materials, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA Department of Metallurgical Engineering, McGill University, 3610 University Street, Montreal, PQ, Canada, H3A 2B2
J. A. Szpunar
Affiliation:
Department of Metallurgical Engineering, McGill University, 3610 University Street, Montreal, PQ, Canada, H3A 2B2
H. Garmestani
Affiliation:
Laboratory for Micromechanics of Materials, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
Get access

Abstract

This paper examines grain boundary sliding under the conditions of plastic strain incompatibility that is the most frequent case in polycrystalline materials. Two components of grain boundary sliding: dependent and independent on intragranular slip are distinguished. Theoretical estimate of a ratio between slip induced sliding and intragranular slip is obtained. It is concluded that slip and sliding are rather independent than interrelated processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kaibyshev, O.A., Superplasticty of Alloys, Intermetallides, and Ceramics, Springer-Verlag, Berlin, 1992, 317 p.10.1007/978-3-642-84673-1Google Scholar
2. Nieh, T.G., Wadsworth, J. and Sherby, O.D., Superplasticity in Metals and Ceramics, Cambridge University Press, 1996, 273 p.Google Scholar
3. Gleiter, H. and Chalmers, B., Progr. Mater. Sci., 16, p. 189 (1972).Google Scholar
4. Kaibyshev, O.A., Astanin, V.V., Valiev, R.Z. and Khairullin, V. G., Phys. Met. Metallogr., 51, p. 166 (1981).Google Scholar
5. Fukutomi, H., Takatori, H. and Horiuchi, R., Trans. Japan Inst. Met., 23, p. 579 (1982).10.2320/matertrans1960.23.579Google Scholar
6. Sheikh-Ali, A.D., Lavrentyev, F.F. and Kazarov, Yu.G., Acta Mater., 45, p. 4505 (1997).10.1016/S1359-6454(97)00119-5Google Scholar
7. Sheikh-Ali, A.D., Scripta Metall. Mater., 33, p. 795 (1995).10.1016/0956-716X(95)00284-3Google Scholar
8. Pond, R.C., Smith, D.A. and Southerden, P.W.J., Philos. Mag. A, 37, p. 27 (1978).10.1080/01418617808239160Google Scholar
9. Horton, A.P., Thompson, N.B.W. and Beevers, C.J., Metal Sci. J., 2, p. 19 (1968).10.1179/030634568790443486Google Scholar
10. Sheikh-Ali, A.D. and Szpunar, J.A., Philos. Mag. Lett., 79, p. 545 (1999).10.1080/095008399176913Google Scholar
11. Sheikh-Ali, A.D. and Szpunar, J.A., Mater. Sci. Forum, 294–296, p. 645 (1999).Google Scholar
12. Naziri, H. and Pierce, R., J. Inst. Metals, 98, p. 71 (1970).Google Scholar
13. Hsu, Shu-En, Edwards, G.R. and Sherby, O.D., Acta Metall., 31, p. 763 (1983).10.1016/0001-6160(83)90092-5Google Scholar
14. Kaibyshev, O.A., Kazachkov, I.V. and Zaripov, N.G., J. Mater. Sci., 23, p. 4369 (1988).10.1007/BF00551933Google Scholar
15. Lee, D., Acta Metall., 17, p. 1057 (1969).10.1016/0001-6160(69)90051-0Google Scholar
16. Vastava, R.B. and Langdon, T.G., Acta Metall., 27, p. 251 (1979).10.1016/0001-6160(79)90103-2Google Scholar
17. Matsuki, K., Hariyama, N. and Tokizawa, M., J. Japan Inst. Metals, 45, p. 935 (1981).10.2320/jinstmet1952.45.9_935Google Scholar
18. Matsuki, K., Hariyama, N., Tokizawa, M. and Murakami, Y., Metal Sci., 17, p. 503 (1983).10.1179/030634583790420529Google Scholar