Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:59:09.688Z Has data issue: false hasContentIssue false

On The Mechanics of Indentation Induced Lateral Cracking

Published online by Cambridge University Press:  01 February 2011

Xi Chen*
Affiliation:
Department of Civil Engineering and Engineering Mechanics, Columbia University New York, NY 10027
Get access

Abstract

The mechanics governing the lateral cracks that form when a hard object plastically penetrates a ceramic is presented. The roles of indentation load, penetration depth and work of indentation are all highlighted, as are the influences of the mechanical properties of the substrate. The three dimensional axisymmetric problem for an annular crack driven by a rigid spherical or conical indenter pushed into a semi-infinite half-space of elastic-perfectly plastic material is solved using numerical methods. The region of highest tensile stress is identified corresponding to the location where a crack is most likely to nucleate. This location coincides with the depth below the surface where the crack will expand parallel to the surface under mode I conditions. The solutions have been validated by comparison with measurements of the cracks that form upon Vickers indentation. The basic formula for the crack radius has been used to predict trends in cracking upon static penetration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cook, R.F. and Pharr, G.M., J. Am. Ceram. Soc, 73, 787817 (1990).Google Scholar
2. Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc, 64, 533545 (1981).Google Scholar
3. Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc, 63, 574580 (1980).Google Scholar
4. Marshall, D.B., Lawn, B.R., and Evans, A.G., J. Am. Ceram. Soc, 65, 561566 (1982).Google Scholar
5. Lawn, B.R. and Fuller, E.R., J. Mater. Sci., 10, 20162020 (1975).Google Scholar
6. Lawn, B.R. and Evans, A.G., J. Mater. Sci., 12, 21952201 (1977).Google Scholar
7. Marshall, D.B., J. Am. Ceram. Soc, 66, 127133 (1983).Google Scholar
8. Evans, A.G. and Charles, E.A., J. Am. Ceram. Soc, 59, 371376 (1976).Google Scholar
9. Niihara, K., J. mater. Sci. Lett., 2, 221223 (1983).Google Scholar
10. Lankford, J., J. mater. Sci. Lett., 1, 493495 (1982).Google Scholar
11. Evans, A.G. and Wilshaw, T.R., Acta Mater., 24, 939945 (1976).Google Scholar
12. Lawn, B.R., J. Am. Ceram. Soc, 81, 19771985 (1998).Google Scholar
13. Vasinonta, A. and Beuth, J.L., Engineering Fracture Mechanics, 68, 843860 (2001).Google Scholar
14. Drory, M.D. and Hutchinson, J.W., Proc. R. Soc. Lond., A452, 23192341 (1996).Google Scholar
15. Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., and Petit, F.S., Progress in Materials Science, 46, 505553 (2001).Google Scholar
16. Chen, X., Wang, R., Yao, N., Evans, A.G., Hutchinson, J.W., and Bruce, R.W.., Mater. Sci. Eng. A, 352, 221231 (2003).Google Scholar
17. Chen, X., He, M.Y., Spitsberg, I., Fleck, N.A., Hutchinson, J.W., and Evans, A.G., Wear, 256, 735746 (2004).Google Scholar
18. Chen, X., Hutchinson, J.W., and Evans, A.G.., Acta Materialia, 52, 565571 (2004).Google Scholar
19. Johnson, K.L., Contact mechanics. Cambridge: Cambridge University Press (1985).Google Scholar
20. ABAQUS, ABAQUS 5.8 User's Manual. Pawtucket, Rhode Island: ABAQUS Inc. (1998).Google Scholar
21. Huang, Y., Hutchinson, J.W., and Tvergaard, V., J. Mech. Phys. Solids, 39, 223241 (1991).Google Scholar
22. Tabor, D., Hardness of metals. Oxford: Oxford University Press (1951).Google Scholar