Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T13:03:41.829Z Has data issue: false hasContentIssue false

On the Hydrolysis of Tetravalent Metal Ions

Published online by Cambridge University Press:  21 March 2011

C. Ekberg
Affiliation:
Department of Nuclear Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden, Email: [email protected]
P. Brown
Affiliation:
Environment Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW, 2234, Australia
J. Comarmond
Affiliation:
Environment Division, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW, 2234, Australia
Y. Albinsson
Affiliation:
Department of Nuclear Chemistry, Chalmers University of Technology, S-41296 Gothenburg, Sweden, Email: [email protected]
Get access

Abstract

The stability constants of the hydroxide complexes of zirconium(IV) and uranium(IV) have been measured at 15, 25 and 35°C [in 1.0 mol dm−3 (Na, H)ClO4] using potentiometry. For zirconium(IV), the results indicate the presence of Zr(OH)3+ and the polymeric species Zr3(OH)48+ and Zr4(OH)88+ whereas the results for uranium(IV) indicate the presence of U(OH)3+ and the polymeric species U4(OH)124+. The hydrolysis of both metal ions was studied at three temperatures allowing the determination of ΔH° and ΔS° of reaction for each species. The results were compared with previous results determined for thorium(IV) under the same experimental conditions to ascertain whether thorium should be used as an analogue for other tetravalent metal ions in safety assessment studies of nuclear repositories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skagius, K., Petterson, M., Wiborgh, M., Albinsson, Y. and Holgersson, S., Compilation of data for the analysis of radionuclide migration from SFL 3-5, SKB report R-99-13, Stockholm, 1999.Google Scholar
2. Bradbury, H.M. and Loon, L.R. Van, Cementitious near-field sorption data bases for performance assessment of a L/LW repository in a palfries marl host rock, PSI report no. 98–01, 1998.Google Scholar
3. Ekberg, C., Albinsson, Y., Comarmond, M.J. and Brown, P.L., J. Solution Chem., 29, 63 (2000).Google Scholar
4. Brown, P.L., Shying, M.E. and Sylva, R.N., J. Chem. Soc., Dalton Trans., 2149 (1987).Google Scholar
5. Sabatini, A., Vacca, A. and Gans, P., Talanta, 21, 53 (1974).Google Scholar
6. Gans, P., Sabatini, A. and Vacca, A., Inorg. Chim. Acta, 18, 237 (1976).Google Scholar
7. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nyugen-Trung, C. and Wanner, H., Chemical Thermodynamics of Uranium, North Holland, Amsterdam, 1992.Google Scholar
8. Noren, B., Acta Chem. Scand., 27, 1369 (1973).Google Scholar
9. Zielen, A.J., The Hydrolytic Polymerisation of Zirconium, University of California Radiation Laboratory Report, UCRL-2268, Berkeley, 1953. 83 p.Google Scholar
10. Zielen, A.J. and Connick, R.E., J. Amer. Chem. Soc., 78, 5785 (1956).Google Scholar
11. Peshkova, V.M., Mel'chakova, N.V. and Zhemchuzhin, S.G., Russ. J. Inorg. Chem., 6, 630 (1961).Google Scholar
12. Solovkin, A.S., Russ. J. Inorg. Chem., 2, 216 (1957).Google Scholar
13. Sheka, I.A. and Pevzner, Ts.V., Russ. J. Inorg. Chem., 5, 1119 (1960).Google Scholar
14. Tribalet, S. and Schriver, L., Bull. Soc. Chim. France, 9, 2012 (1975).Google Scholar
15. Veyland, A., Dupont, L., Pierrard, J.-C., Rimbault, J. and Aplincourt, M., Eur. J. Inorg. Chem., 11, 1765 (1998).Google Scholar
16. Connick, R.E. and Reas, W.H., J. Amer. Chem. Soc., 73, 1171 (1951).Google Scholar
17. Baes, C.F. and Mesmer, R.E., The Hydrolysis of Cations, 2nd Ed., Krieger, , New York, 1986.Google Scholar
18. Silva, R.J., Review of Zirconium(IV) Thermodynamic Data – Hydroxide Complexes, Yucca Mountain Site Characterisation Project, 1998. 35 p.Google Scholar
19. Kraus, K.A. and Johnson, J.S., J. Amer. Chem. Soc., 75, 5769 (1953).Google Scholar
20. Clearfield, A. and Vaughan, P.A., Acta Crystallogr., 9, 555 (1956).Google Scholar
21. Kraus, K.A. and Nelson, F., J. Amer. Chem. Soc., 72, 3901 (1950).Google Scholar
22. Nikolaeva, N.M., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 9, 91 (1978).Google Scholar
23. McKay, H.A.C. and Woodhead, J.L., J. Chem. Soc., 717 (1964).Google Scholar
24. Hietanen, S., Acta Chem. Scand., 10, 1531 (1956).Google Scholar
25. Hietanen, S., Rec. Trav. Chim. Pays-Bas, 75, 711 (1956).Google Scholar
26. Brown, P.L., Ellis, J. and Sylva, R.N., J. Chem. Soc. Dalton Trans., 31 (1984).Google Scholar
27. Kraus, K.A. and Nelson, F., J. Amer. Chem. Soc., 77, 3721 (1955).Google Scholar
28. Betts, R.H., Can. J. Chem., 33, 1775 (1955).Google Scholar
29. Baes, C.F., Meyer, N.J. and Roberts, C.E., Inorg. Chem., 4, 518 (1965).Google Scholar
30. Kraus, K.A. and Holmberg, R.W., J. Phys. Chem., 58, 325 (1954).Google Scholar
31. Nabivanets, B.I. and Kudritskaya, L.N., Ukr. Khim. Zh., 30, 891 (1964).Google Scholar
32. Slobodov, A.A., Kritskii, A.V., Zarembo, V.I. and Puchkov, L.V., Zhur. Prik. Khim., 65, 1031 (1992).Google Scholar
33. James, W.J. and Johnson, J.W., Titanium, zirconium and hafnium. In Standard potentials in aqueous solution, Bard, A.J., Parsons, R. and Jordan, J., eds., Marcel Dekker, New York. pp. 539553.Google Scholar