Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-07T22:20:54.590Z Has data issue: false hasContentIssue false

On the Glass in Coal Fly Ashes: Recent Advances

Published online by Cambridge University Press:  21 February 2011

R. T. Hemmings
Affiliation:
Ontario Research Foundation, Sheridan Park, Mississauga, Ontario, Canada, L5K 1B3
E. E. Berry
Affiliation:
Ontario Research Foundation, Sheridan Park, Mississauga, Ontario, Canada, L5K 1B3
Get access

Abstract

Recent advances in the characterization of the glassy aluminosilicate phases in coal fly ashes are reviewed and discussed in terms of the development of new models describing their mechanism of formation, composition, structural relationships and chemical reactivity. Characterization techniques such as electron microscopy, x-ray diffraction, infrared and Raman spectroscopy, nuclear magnetic resonance and Mössbauer spectroscopies, thermal analysis, acid dissolution, silanation, and density fractionation have been used as experimental probes, and reveal a range of information relating to the glass phases from the macro, through the micro, to the nano-structural levels. Complex inter- and intra-particle heterogeneity in ash is observable not only in bulk chemical and mineralogical analyses but also at the molecular level in the constituent glasses. Remarkable relationships between ash particle size, density and glass composition have been observed and lead to a new proposed mechanism for ash morphogenesis based on temperature-viscosity effects in the mineral precursor melts in the boiler flame. A glass-ceramic model for fly ash particle structure is proposed and discussed in terms of phase relations in the CaO–SiO2–Al2O3 and FeO–Fe2O3–A12O3–SiO2 systems, modification of the aluminosilicate glasses by alkali and alkaline earth metal cations, and microheterogeneity involving glass devitrification and phase separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jackson, P.J., J. Appl. Chem. 7, 605, (1957).Google Scholar
2. Simons, H.S. and Jeffery, J.W., J. Appl. Chem. 10, 328 (1960).CrossRefGoogle Scholar
3. Watt, J.D. and Thorne, D.J., J. Appl. Chem. 15, 585 (1965).CrossRefGoogle Scholar
4. Raask, E., J. Inst. Energy 51, 70 (1980); Trans. A.S.M.E., paper no. 81-JPGC-Fu-1, Oct. 1981.Google Scholar
5. Hulett, L.D. and Weinberger, A.J., Env. Sci. Technol. 14, 965 (1980); L.D. Hulett, A.J. Weinberger, K.J. Northcutt and N.M. Ferguson, Science 210, 1356 (1980); L.D. Hulett, A.J. Weinberger, N.M. Ferguson, K.J. Northcutt and W.S. Lyon, in Trace Elements and Phase Relations in Fly Ash, EPRI Report EA-1822, May 1981.Google Scholar
6. Diamond, S., Cem. Conc. Research 13, 459 (1983).Google Scholar
7. Mather, B., Cem. Conc. Research 14, 887 (1984).Google Scholar
8. van Roode, M. and Hemmings, R.T., CANMET Contract Report No. ISQ83-00162, July 1985; E. Douglas, P. Mainwaring, M. van Roode and R.T. Hemmings, CANMET Report No. 85-6E, Oct. 1985; M. van Roode, E. Douglas and R.T. Hemmings, Cem. Conc. Research 17, 183 (1987).Google Scholar
9. Mehta, P.K., Cem. Conc. Research 15, 669 (1985).Google Scholar
10. Hemmings, R.T. and Berry, E.E., in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal II, edited by McCarthy, G.J., Glasser, F.P., Roy, D.M. and Diamond, S., Mat. Res. Soc. Symp. Proc. Vol.65 (Materials Research Society, Pittsburgh, 1986) pp. 91104.Google Scholar
11. Uchikawa, H., Uchida, S. and Hanehara, S., Proc. 8th Int. Congress on the Chemistry of Cement, Vol. IV, Rio de Janeiro, Brazil, Sept. 22–27, 1986, pp. 245–250.Google Scholar
12. Hemmings, R.T., Berry, E.E., Cornelius, B.J. and Scheetz, B.E., in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal III, edited by McCarthy, G.J., Glasser, F.P. and Roy, D.M., Mat. Res. Soc. Symp. Proc. Vol. 86 (Materials Research Society, Pittsburgh, 1987) pp. 8198.Google Scholar
13. Hemmings, R.T. and Berry, E.E., Evaluation of Plastic Filler Applications for Leached Fly Ash, EPRI Report CS-4765/RP2422-1 1, Sept. 1986.Google Scholar
14. Berry, E.E., Hemmings, R.T. and Golden, D.M., in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal III, edited by McCarthy, G.J., Glasser, F.P. and Roy, D.M., Mat. Res. Soc. Symp. Proc. Vol. 86 (Materials Research Society, Pittsburgh, 1987) pp. 365380.Google Scholar
15. Hemmings, R.T., Berry, E.E. and Golden, D.M., Proc. 8th Int. Ash Util. Symp., Washington, Oct. 28–31, 1987, paper 38-A (EPRI CS-5362/P2422).Google Scholar
16. Berry, E.E., Hemmings, R.T. and Cornelius, B.J., this volume.Google Scholar
17. McClung, J.D. and Geer, M.R., “Properties of Coal and Coal Impurities,” in Coal Preparation, edited by Leonard, J.W. (Am. Inst. Mining, Metall. and Petrol. Engs., 1979); H.J. Gluskoter, "Mineral Matter and Trace Elements in Coal," in Trace Elements in Fuel, edited by S.P. Babu (Am. Chem. Soc., Washington, D.C., 1975), pp. 1–22; R.B. Finkelman, in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal II, edited by G.J. McCarthy, F.P. Glasser and D.M. Roy, Mat. Res. Soc. Symp. Proc. Vol. 65 (Materials Research Society, Pittsburgh, 1986) pp. 71–76.Google Scholar
18. Raask, E. and Schilling, C.J., Ann. Ind. Hygeine 23, 147 (1980).Google Scholar
19. Raask, E., Fuel 48, 366 (1969).Google Scholar
20. Turkdogan, E.T., Physicochemical Properties of Molten Slags and Glasses, (The Metals Society, London, 1983), and references therein.Google Scholar
21. Mattigod, S.V. and Ervin, J.O., Fuel 62, 927 (1983); T. Konuma, T. Kikuchi, and K. Furuya, J. Japan. Soc. Air Pollut. 19, 35 (1984); S.V. Mattigod, Scan. Elect. Microsc. 611 (1982).Google Scholar
22. Chaddha, G. and Seehra, M.S., Appl. Phys. 16, 1767 (1983).Google Scholar
23. Fisher, G.L., Prentice, B.A., Silberman, D., Ondov, J.M., Biermann, A.H., Ragaini, R.C. and McFarland, A.R., Env. Sci. Technol. 12, 447, (1978); D. Hansen, D. Silberman and G.L. Fisher, Env. Sci. Technol. 15, 1057 (1980); J.A. Campbell, J.C. Laul, K.K. Nielson and R.D. Smith, Anal. Chem. 50, 1032 (1978).CrossRefGoogle Scholar
24. Linton, R.W., Loh, A., Natusch, D.F., Evans, C.A. and Williams, P., Science 191, 852 (1976).Google Scholar
25. Cavin, D.C., Klemm, W.A. and Burnet, G., Proc. Iowa Acad. Sci. 1,130 (1974).Google Scholar
26. McCarthy, G.J., this volume.Google Scholar
27. McCarthy, G.J., Swanson, K.D., Keller, L.P. and Blatter, W.C., Cem. Conc. Research 14, 471 (1984); G.J. McCarthy, D.M. Johansen, S.J. Steinwand and A. Thedchanamoorthy, Adv. X-Ray Anal. 21, in press.Google Scholar
28. Rawson, H., Properties and Applications of Glass, (Elsevier, Amsterdam, 1980), p. 1.Google Scholar
29. Vogel, W., Chemistry of Glass, edited by Kreidl, N. (The American Ceramic Society, Inc., Columbus, Ohio, 1985).Google Scholar
30. Paul, A., Chemistry of Glasses, (Chapman and Hall, London, 1982).Google Scholar
31. Wong, J. and Angell, C.A., Glass Structure by Spectroscopy, (Marcel Dekker, Inc., New York, 1976).Google Scholar
32. Zachariasen, W.J., J. Am. Ceram. Soc. 54, 3841 (1932).Google Scholar
33. Warren, B.E., Kristallogr, Z., Mineralog. Petrogr. 86, 349 (1933).Google Scholar
34. Prebus, A.F. and Michener, J.W., Ind. Eng. Chem. 46, 147 (1953); J. Zarzycki and R. Mezard, Phys. Chem. Glasses 3, 163 (1962); J.W. Cahn and R.J. Charles, Phys. Chem. Glasses 6, 181, (1965).CrossRefGoogle Scholar
35. Scanning electronmicrographs courtesy of the Canadian Ceramic Society. Micrographs prepared by: (a) D.W. Jones, Dalhousie University, Halifax, Nova Scotia; and (b) P.J. Hayward and D.C. Doern Atomic Energy of Canada Limited, Pinawa, Manitoba.Google Scholar
36. James, P.F., J. Mat. Sci. 10, 1802 (1975).Google Scholar
37. MacDowell, J.F. and Beall, G.H., J. Am. Ceram. Soc. 52, 17 (1969).Google Scholar
38. Stevenson, R.J. and Huber, T.P., in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal III, edited by McCarthy, G.J., Glasser, F.P., Roy, D.M. and Diamond, S., Mat. Res. Soc. Symp. Proc. Vol. BL (Materials Research Society, Pittsburgh, 1987) pp. 99108, and references therein; R.J. Stevenson and J.C. Collier, this volume.Google Scholar
39. DeGuire, E.E. and Risbud, S.H., J. Mat. Sci. 19, 1760 (1984).Google Scholar
40. Hubbard, F.H., McGill, R.J., Dhir, R.K. and Ellis, M.S., Min. Mag. 48, 251 (1984).Google Scholar
41. Lauf, R.J., in Application of Materials Techniques to Coal and Coal Wastes, Oak Ridge National Laboratory Report ORNL/TM-7663, Aug. 1981; Am. Ceram. Soc. Bull. 61, 487 (1982).Google Scholar
42. Qian, J.C., Lachowski, E.E. and Glasser, F.P., this volume.Google Scholar
43. Hemmings, R.T., Berry, E.E. and Cornelius, B.J., unpublished work.Google Scholar
44. Wang, C.M. and Chen, H., Phys. Chem. Glasses 28, 39 (1987).Google Scholar
45. Virgo, D., Mysen, B.O. and Kushiro, I., Science 208, 1371 (1980); B.O. Mysen, D. Virgo and C.M. Scarfe, Am. Mineralogist j, 690 (1980).Google Scholar
46. Matson, D.W., Sharma, S.K. and Philpotts, J.A., J. Non-Crystalline Solids 58, 323 (1983).Google Scholar
47. Raman data courtesy of B.E. Scheetz, Pennsylvania State University, and reported in part at the 2nd Int. Conf. on the Use of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Madrid, Spain, April 1986.Google Scholar
48. Eberendu, A.R.N. and Daugherty, K.E., Cem. Conc. Research 14, 873 (1984).Google Scholar
49. Huffman, G.P., Huggins, F.E. and Dunmyre, G.R., Fuel 60, 585 (1981).CrossRefGoogle Scholar
50. Fox, K.E., Furukawa, T. and White, W.B., Phys. Chem. Glasses 23, 169 (1982).Google Scholar
51. Hinckley, C. C, Smith, G.V., Twardowska, H., Saporoschenko, M., Shiley, R.H. and Griffen, R.A., Fuel 52, 161 (1980).Google Scholar
52. Aikin, T.L.H., Cashion, J. and Ottrey, A.L., Fuel 63, 1269 (1984).Google Scholar
53. Engelhardt, G., Nofz, M., Forkel, K., Wihsmann, F.G., Mägi, M., Samoson, A. and Lippmaa, E., Phys. Chem. Glasses 26, 157 (1985).Google Scholar
54. Ramachandran, V.S., Applications of Differential Thermal Analysis in Cement Chemistry, (Chem. Publ. Co. Inc., New York, 1969), pp. 196201.Google Scholar
55. Chopra, S.K. and Taneja, C. A, Proc. 5th Int. Symp. on the Chemistry of Cement, Tokyo, Japan, 1968, Part IV, pp. 228–236.Google Scholar
56. Scheetz, B.E., Strickler, D.W., Grutzeck, M.W. and Roy, D.M., in Effects of Flyash Incorporation in Cement and Concrete, edited by Diamond, S., (Materials Research Society, University Park, PA, 1982), pp. 2433.Google Scholar
57. Diamond, S., Cem. Conc. Research 16, 569 (1986).CrossRefGoogle Scholar
58. Lentz, C.W., Inorg. Chem. 3, 574 (1964).Google Scholar
59. Gotz, J. and Masson, C.R., J. Chem. Soc. (A), 2683 (1970), 686 (1971).Google Scholar
60. See for example, Tamas, F.D., Sarkar, A.K. and Roy, D.M., in Hydraulic Cement Pastes: their Structure and Properties, (Cement & Concrete Assoc., Slough, U.K., 1976), p. 55; L.S. Dent Glasser, E.E. Lachowski, M.Y. Qureshi, H.P. Calhoun, D.J. Embree, W.D. Jamieson and C.R. Masson, Cem. Conc. Research 11, 775 (1981).Google Scholar
61. Norton, G.A., Markuszewski, R. and Shanks, H.R.. Env. Sci. Technol. 20, 409 (1986).Google Scholar
62. Biggs, D.L. and Bruns, J.J., in Fly Ash and Coal Conversion By-Products: Characterization. Utilization and Disposal I, edited by McCarthy, G.J. and Lauf, R.J., Mat. Res. Soc. Symp. Proc. Vol.43 (Materials Research Society, Pittsburgh, 1985) pp. 2129.Google Scholar
63. Warren, C.J. and Dudas, M.J., Mobilization and Attenuation of Trace Elements in an Artificially Weathered Fly Ash, EPRI Report EA-4747, Electric Power Research Inst., Palo Alto (1986); M.J. Dudas, this volume.Google Scholar