Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T22:46:17.806Z Has data issue: false hasContentIssue false

On the Entrance Effects and the Influence of Buoyancy Forces on the Fluid Flow In Rtp Reactors

Published online by Cambridge University Press:  10 February 2011

Yu. P. Rainova
Affiliation:
Moscow State Institute of Electronic Engineering, Department of Physical Chemistry Fundamentals of Microelectronics Technology, 103498 Moscow, Russian Federation
K. I. Antonenko
Affiliation:
Moscow State Institute of Electronic Engineering, Department of Physical Chemistry Fundamentals of Microelectronics Technology, 103498 Moscow, Russian Federation
J. Pezoldt
Affiliation:
TU Iimenau, Institut für Festkörperlelktronik, Postfach 100565, D-98693 Iimenau, Germany, [email protected]
A. Schenk
Affiliation:
TU Iimenau, Institut für Festkörperlelktronik, Postfach 100565, D-98693 Iimenau, Germany
Get access

Abstract

Flow and heat transfer effects play a critical role in chemical vapour deposition (CVD) reactors. Holographic interferometry offers the possibility to study the flow dynamics of an entire region in real time under process conditions with negligible disturbances of the investigated process. The advantage of the method is the possibility of accurate measurements of flow patterns and temperature profiles in a fast dynamic process under actual experimental conditions. Mixed and forced flow conditions were studied for two gases with distinct different thermophysical properties. The influence of the gas inlet system and buoyancy forces on the resulting fluid flow are highlighted. A special attention was drawn on the visualization of edge effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lord, H. A., IEEE Trans. Semicond. Manuf. 1 105 (1988).Google Scholar
2. Campell, S. A., Ahn, K.-H., Knutson, K. L., Liu, B. Y. and Leighton, J. D., IEEE Trans. Semicond. Manuf. 4 14 (1991).Google Scholar
3. Zöllner, J.-P., Patzschke, I., Pietzuch, V., Pezoldt, J., Mater. Res. Soc. Proc. 303 177(1993).Google Scholar
4. Jensen, K.F., Merchant, T.P., Cole, J.V., Hebb, J. P.,, Knutson, K.L. and Mihopoulos, T.G., NATO ASI Series E: Applied Sciences 318 265 (1996).Google Scholar
5. Esperanza, T., Riley, T., Nanda, A., Fowler, B., Torres, K., Geyling, F. and Lindholm, D., Mater. Res. Soc. Proc. 429 309 (1996).Google Scholar
6. S. Chatterjee, Trachtenberger, I. and Edgar, T.F., J.Electrochem. Soc. 139 3682 (1992).Google Scholar
7. Knutson, K.L., Campbell, S.A. and Dunn, F., IEEE Trans. Semicond. Manuf. 7 68 (1994).Google Scholar
8. Angermeier, D., Monna, R., Slaoui, A. and Muller, J. C., J. Electrochem. Soc. 144 3256 (1997).Google Scholar
9. Eversteijn, F. C., Severin, P. J. W., van den Brekel, C. H. J. and Peek, H.L., J. Electrochem. Soc. 117 925 (1970).Google Scholar
10. Visser, E. P., Kleijn, C. R., Govers, C. A. M., Hoogendoorn, C. J. and Giling, L. J., J. Cryst. Growth 94 (1989).Google Scholar
11. Fotiadis, D.I. and Jensen, K.F., J. Cryst. Growth 102 743 (1990).Google Scholar
12. Chiu, K.C. and Rosenberger, F., Int. J. Heat Mass Transfer 30 1645 (1987).Google Scholar
13. Itoh, F., Kychakoff, G. and Hansen, R.K., J. Vac. Sci. Technol., B3 1600 (1985).Google Scholar
14. Lord, H.A., J. Electrochem. Soc. 134 1227 (1987).Google Scholar
15. Sedgewick, T.O., Smith, J.E. Jr., Ghez, R. and Crowner, M.E., J. Cryst. Growth 31 264 (1975).Google Scholar
16. Gilling, L.J., J. Electrochem. Soc. 129 634 (1982).Google Scholar
17. Rainova, Yu. P., Antonenko, K. I., Pezoldt, J., Schenk, A. and Eichhorn, G., Electrochem. Soc. Proc. 97–25 717 (1997).Google Scholar
18. Yu.Rainova, P., Turilin, S. M., Sorokin, I. N. and Antonenko, K. I., Inorganic Materials 31 151 (1995).Google Scholar
19. Antonenko, K. I., Andarenko, A. A., Rainova, Yu.P., Sorokin, I. N. and Turulin, S. M., Fluid Dynamics 31 897 (1996).Google Scholar
20. Leitz, G., Pezoldt, J., Patzschke, I., Zöner, J.-P. and Eichhorn, G., Mater. Res. Soc. Proc. 303 171 (1993).Google Scholar
21. Vest, C., Holographic interferometry, Wiley & Sons, New York, 1979, pp. 166, pp. 314–321.Google Scholar
22. Pavelek, M. and Filakovský, , in Flow Visualization V, edited by R. Rezniček (Proc. of the 5th Intern. Symp. on Flow Visualization, Prag, 1989), p. 870874.Google Scholar
23. Yu.Rainova, P., Pezoldt, J., Antonenko, K.I. and Eichhorn, G., Mater. Res. Soc. Symp. Proc. 429 65 (1996).Google Scholar
24. S. Benet, Berge, R., Brunet, S., Charar, C., Armas, B. and et Combescure, C., Rev. Int. Hautes Temper. Refract., Fr. 19 77 (1982).Google Scholar
25. Schenk, A. unpublished work.Google Scholar
26. Gilling, L.J., J. Phys., Colloq. C5, 43 C5235 (1982).Google Scholar