Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T20:28:39.118Z Has data issue: false hasContentIssue false

On the Electronic Nature of Phase Transformations in Ti-Me Shape Memory Compounds

Published online by Cambridge University Press:  25 February 2011

S. A. Shabalovskaya*
Affiliation:
V. D. Kuznetsov Physical-Technical Institute, Tomsk 634050, U.S.S.R
Get access

Abstract

Binary or quasi-binary compounds TI-Me (where Me stands for Fe, Co, Ni, Pd. Pt and Au, or Ni with one of the above metals) with the B2 (CsCl) structure are known to undergo martensitic transformations of two types: B2-B19'(B19) and B2-R, with an Intermediate precursor charge-density-wave Incommensurate phase IS. Analysis of both experimental and theoretical data enabled us to establish empirical relations between the transformation temperatures: Ms(B2-B19') and TIs(B2-1S), and fundamental parameters of both electronic and crystal structures of the compounds, such as the lattice parameters, the shift of the d-band in the compound with respect to that in the pure Me, the compound's d-band width, the Ti site-projected d-densities of states at the Fermi level In the compound and BCC Ti, and the temperature of β-β allotropic transformation In pure Ti. This correlation is based on localization of the Me d-bands in the compounds. As a result the Me-Me interaction becomes less important, and the interatomic interactions are controlled by d-d (Ti-Ti) and sp-d (Me-Ti) bonds. The Fermi levels are dominated by the Ti d-states, which control the lattice dynamics as well. The latter is also reflected in closeness of the C' moduli and similar values of the phonon frequencies In Ti and the TiNi compound. Since the intermediate IS phase results from a frozen phonon mode and Is controlled by the electron-phonon interaction, the B2-IS transition temperature can be correlated with the Debye Temperature, θD as: TIS=λθD. Estimates based on experimental data show that for Ti-Ni alloys λ < 1.3. A decrease of λ upon alloying with Fe stabilizes the B2 phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refernces

1. Shabalovskaya, S. A., Physica Status Solidi (b), 132, 327 (1985)CrossRefGoogle Scholar
2. Lotkov, A. I., Anokhin, S.V., Grishkov, V. N. and Belyaeva, M. A., in Materials With Shape Memory Effects Novgorod-Leningrad, 1989, p. 111 (in Russian)Google Scholar
3. Sivokha, V. P., Savvinov, A. S., Voronin, V. P. and Khachin, V. N., Phys. Met. Metall, 56,112(1983); V. P. Sivokha, and V. N. Khachin,ibid, 62,108,(1986)Google Scholar
4. Maslenkov, S. B., Budygina, N. B., Shorshorov, M. Kh. and Flomenblit, Yu. M., Phys. Met. Metall, 66,90(1988)Google Scholar
5. Shabalovskaya, S. A., Lotkov, A. I., Narmonev, A. G. and Zakharov, A. I., Solid State Commun. 62,93(1987)CrossRefGoogle Scholar
6. Shabalovskaya, S. A. and Narmonev, A. G., Solid State Commun. 66,137(1988)CrossRefGoogle Scholar
7. Shabalovskaya, S. A., Narmonev, A. G., Baturin, A. A. and Fedotov, A. A., DAN SSSR, 302, 647 (1988) (in Russian)Google Scholar
8. Barinsky, R. L., Kosheleva, I. V., Shabalovskaya, S. A. and Kulikova, I. M., Russ J. Inorg. Chem, 35,107(1990)Google Scholar
9. Shabalovskaya, S. A., Ivanova, O. P. and Dement'ev, A. P., Russ J. Inorg. Chem, 30, 381(1989)Google Scholar
10. Shore, J. D., Papaconstantopoulos, D. A., J. Phys. Chem Solids, 45,439(1984)CrossRefGoogle Scholar
11. Keil, M., Electron-Phonon Interaction and lattice Dynamics in TiNi, Thesis, Institut for Kernphysik, Johann-Wolfgang Goethe Universität, Frankfurt,1989 Google Scholar
12. Shabalovskaya, S. A., Solid State Communications, 70,23(1989)CrossRefGoogle Scholar
13. Krasko, G. L., unpublishedGoogle Scholar
14. lvanovsky, A. L., Novikov, D. L., Anisimov, V. I. and Gubanov, V. A., J. Struct. Chem, 30, 381 (1989)Google Scholar
15. Fisher, E. S. and Dever, D., Acta Met. 18,265(1970)CrossRefGoogle Scholar
16. Mercier, O., Melton, K. N., Gremaund, G. and Hägi, Y, J. Appl. Phys. 51,1833(1980)CrossRefGoogle Scholar
17. Moine, P., Allain, J. and Benker, B., J. Phys. F: Metal Phys.,14,2517(1984)10.1088/0305-4608/14/11/009CrossRefGoogle Scholar
18. Hergert, G., Müllner, M., Eckold, G. and Jex, H., in Int. Conf. Phonons, Heidelberg, 1989; H. Tietze, M. MOl1ner and B. Renker, J. Phys. C: Solid State Phys, 17, L529 (1984)Google Scholar
19. Heiming, A., Petry, W., Trampenau, J., Alba, M., Herzig, C. and Vogl, G., Phys. Rev. B40,11425(1989)CrossRefGoogle Scholar
20. Collings, E. W., The Physical Metallurgy of Titanium Alloys, ASM, 1984 Google Scholar
21. Ho, K. M., Fu, C. L. and Harmon, B. N., Phys. Rev. B28,6687(1983)CrossRefGoogle Scholar
22. Zhao, G. L., Leung, T. C. and Harmon, B. N., Phys. Rev. B40,7999(1989)CrossRefGoogle Scholar
23. Hwang, H. M., Meichle, M., Salamon, M. B. and Wayman, C. M., Phil. Mag. 47,9(1983)CrossRefGoogle Scholar
24. Satija, S. K., Shapiro, S. M., Salamon, M. B. and Wayman, C. M., Phys. Rev. B 29,6031(1984)CrossRefGoogle Scholar
25. Kolomishev, V. I., Lobodjuk, V. A. and Mushankin, I. A., Metallurgija,11,49(1989) (in Russian)Google Scholar
26. Shabalovskaya, S. A., Lotkov, A. I., and Baturin, A. A., Solid State Commun. 41,15(1982)CrossRefGoogle Scholar
27. Muslov, S. A., Thesis, Tomsk University, 1987 Google Scholar
28. Papaconstantopoulos, D. A., Phys. Rev. B11,4801(1975)CrossRefGoogle Scholar
29. Narayanasamy, A., Ericsson, T., Nagarajan, T. and Muthukamarasamy, P. Phys. Stat. Solidi (a) 42, K65(1977)CrossRefGoogle Scholar