Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:11:02.081Z Has data issue: false hasContentIssue false

Oligomers Containing Mixed Thiophene and Pyrrole Units

Published online by Cambridge University Press:  16 February 2011

Michael P. Cava
Affiliation:
University of Alabama, Department of Chemistry, Box 870336, Tuscaloosa, Alabama 35487–0336
James P. Parakka
Affiliation:
University of Alabama, Department of Chemistry, Box 870336, Tuscaloosa, Alabama 35487–0336
M. V. Lakshmikantham
Affiliation:
University of Alabama, Department of Chemistry, Box 870336, Tuscaloosa, Alabama 35487–0336
Get access

Abstract

The synthesis and properties of polythiophenes, polypyrroles and their oligomers has evolved into a major area of conducting polymer research. Mixed systems containing both thiophene and pyrrole units have received much less attention. In this paper, the chemistry of thiophene-pyrrole oligomers containing up to seven heterocyclic units is reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1). Handbook of Conducting Polymers, Vol.1 (Ed: Skotheim, T.A.), Marcel Dekker New York 1986.Google Scholar
2). For some recent studies on oligothiophenes and further references in this area, see: (a) Tour, J. M. and Wu, R., Macromolecules 25, 1901 (1992);Google Scholar
(b) Bäuerle, P., Segelbacher, U., Gaudl, K. U., Huttenlocker, D., and Mehring, M., Angew. Chem. Int. Ed. Engl. 32, 76 (1993).Google Scholar
3). For pyrrole oligomers see : Martina, S., Enkelmann, V., Wegner, G., and Schlüter, A.D., Synth. Met. 51, 299 (1992);Google Scholar
(b) Zotti, G., Martina, S., Wegner, G., and Schlüter, A.D., Adv. Mater. 4, 798 (1992).Google Scholar
4). (a) Ferraris, J.P. and Skiles, G.D., Polymer 28, 179 (1987);CrossRefGoogle Scholar
(b) Ferraris, J.P., Andrus, R.G., and Hrncir, D., J. Chem. Soc. Chem. Commun. 1318 (1989);CrossRefGoogle Scholar
Ferraris, J.P. and Hanlon, T.R., Polymer 30, 1309 (1989).CrossRefGoogle Scholar
5). Joshi, M.V., Cava, M. P., Bakker, M.G., McKinley, A.J., Cain, J.L. and Metzger, R.M., Synth. Met., 55–57, 948 (1993)Google Scholar
6). Joshi, M.V., Hemler, C., Cava, M.P., Cain, J.L., Bakker, M.G., McKinley, A.J. and Metzger, R.M., J. Chem. Soc. Perkin Trans. 2, 1081 (1993)Google Scholar
7). Niziurski-Mann, R.E., Scordilis-Kelley, C., Liu, T.L., Cava, M.P. and Carlin, R.T., J. Am. Chem. Soc., 115, 887 (1993).CrossRefGoogle Scholar
8). Engel, N., and Steglich, W., Angew. Chem. Int. Ed. Engl. 17, 676 (1978).Google Scholar
9). Niziurski-Mann, R.E. and Cava, M.P., Adv. Mater., 5, 547 (1993).Google Scholar
10). Parakka, J.P., Unpublished ResultsGoogle Scholar
11). Guay, J., Diaz, A., Wu, R., Tour, J.M. and Dao, L.H., Adv. Mater., 4, 254 (1992).Google Scholar