Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T19:56:41.050Z Has data issue: false hasContentIssue false

Off-Center N and O in Silicon

Published online by Cambridge University Press:  28 February 2011

Harold P. Hjalmarson
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
Dwight R. Jennison
Affiliation:
Sandia National Laboratories Albuquerque, New Mexico 87185
J. S. Binkley
Affiliation:
Sandia National Laboratories Livermore, California 94550
Get access

Abstract

The pseudo Jahn-Teller effect and chemical rebonding are both considered as mechanisms that drive substitutional atoms, such as N in Si, off-center. By use of an effective Hamiltonian technique, impurities forming very deep levels, such as Si:N, are found to be susceptible to off-center displacement by the pseudo Jahn-Teller effect. Using a Hartree-Fock technique, we find two classes of N displacements which depend on the relaxation of the nearest-neighbor Si atom “cage”. For outward relaxation of the four nearest neighbors, the N displaces by 0.05 Å in the [111] direction and retains sp3 bonding; this mechanism appears equivalent to the pseudo Jahn-Teller effect. For inward relaxation of the “cage” by 0.45 Å the N displaces by 0.75 Å in the [1 1 1] direction and forms a trigonal sp2 bond; this is a chemical rebonding mechanism. Additional cluster calculations suggest that inward relaxation of the “cage” is likely. Similar calculations for 0 revealed a <100> displacement of approximately 1.1Å.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brower, K. L., Phys. Rev. Lett. 44, 1627 (1980).CrossRefGoogle Scholar
2. Brower, K. L., Phys. Rev. B26, 6040 (1982).Google Scholar
3. Messmer, R. P. and Watkins, G. D., Phys. Rev. B7, 2568 (1973).Google Scholar
4. Smith, W. V., Sorokin, P. P., Gelles, I. L., and Lasher, G. J., Phys. Rev. 115, 1546 (1959).Google Scholar
5. Hjalmarson, H. P., Vogl, P., Wolford, D. J., Dow, J. D., Phys. Rev. Lett. 44, 810 (1980).CrossRefGoogle Scholar
6. Lannoo, M., Phys. Rev. B 25, 2987 (1982).CrossRefGoogle Scholar
7. Watkins, G. D., Deleo, G. C., Fowler, W. B., Physica 116b, 28 (1983) and G. C. DeLeo, W. B. Fowler, and G. D. Watkins, Phys. Rev. B 29, 3193 (1984).Google Scholar
8. Hjalmarson, H. P. and Jennison, D. R., Phys. Rev. B31, 1208 (1985).Google Scholar
9. Messmer, R. P. and Schultz, P. A., Solid State Commun. 52, 563 (1984).Google Scholar
10. Opik, U. and Pryce, M. H. L., Proc. R. Soc. London Sect. A 238, 425 (1957).Google Scholar
11. Hjalmarson, H. P., Superlattices and Microstructures 1, 379 (1985).CrossRefGoogle Scholar
12. Hydrogen-like “siligen” atoms were used to simulate embedded cluster boundary conditions; see Goddard, W. A. III and McGill, T. C., J. Vac. Sci. Technol. 16, 1308 (1979).Google Scholar
13. Roothaan, C. C. J., Rev. Mod. Phys. 32, 179 (1960).Google Scholar
14. Dupuis, M., Rys, J., and King, H. F., QCPE Bull. 10, 336 (1977).Google Scholar
15. Binkley, J. S., Frisch, M. J., DeFres, D. J., Raghavachari, K., Whiteside, R. A., Schlegel, H. B., Fluder, E. M., Pople, J. A., GAUSSIAN82, (Carnegie-Mellon University, Pittsburgh, 1982).Google Scholar
16. Dunning, T. H. Jr. and Hay, P. J. in Methods of Electronic Structure Theory, edited by Schaefer, H. F. III, (Plenum, New York, 1977), Vol. 3, Chap. 1, pp.127.Google Scholar