Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:49:58.805Z Has data issue: false hasContentIssue false

Observation of X-Ray Absorption Magnetic Circular Dichroism in well-Characterized Iron-Cobalt-Platinum Multilayers

Published online by Cambridge University Press:  03 September 2012

A.F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science Department, P.O. Box 808, Livermore, California 94550, U.S.A.
G.D. Waddill
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science Department, P.O. Box 808, Livermore, California 94550, U.S.A.
J.G. Tobin
Affiliation:
Lawrence Livermore National Laboratory, Chemistry & Materials Science Department, P.O. Box 808, Livermore, California 94550, U.S.A.
Get access

Abstract

Magnetic circular dichroism in the Fe 2p x-ray absorption is observed in multilayers of (Fe9.5Å/Pt9.5Å)92. The Magnetization and helicity are both in the plane of this multilayer which is prepared by magnetron sputter deposition. This sample is part of a study to examine magnetization in the ternary multilayer system of FeCo/Pt. Lattice and layer pair spacings are measured using x-ray scattering. The atomic concentration profiles of the multilayer films are characterized using Auger electron spectroscopy coupled with depth profiling. Conventional and high resolution transmission electron microscopy are used to examine the thin film, growth morphology and atomic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Carcia, P.F., Meinhaldt, A.D. and Suna, A., Appl. Phys. 47, 178 (1985).Google Scholar
2 Carcia, P.F., J. Appl. Phys. 63, 5066 (1988).Google Scholar
3 Zhang, Z., Wigen, P.E. and Parkin, S.S.P., J. Appl. Phys. 69, 5649 (1991).Google Scholar
4 Hermsmeier, B.D., Farrow, R.F.C., Lee, C.H., Marinero, E.E., Lin, C.J., Marks, R.F. and Chien, C.J., J. Appl. Phys. 69, 5646 (1991).Google Scholar
5 Katayama, T., Suzuki, Y., Nishihara, Y., Sugimoto, T. and Hashimoto, M., J. Appl. Phys. 69, 5658 (1991).Google Scholar
6 Devlin, E., Psycharis, V., Kostikas, A., Simopoulos, A., Niarchos, D., Jankowski, A., Tsakalakos, T., Wan, H. and Hadjipanayis, G., J. Magn. Magn. Mater. 120, 236 (1993).Google Scholar
7 Tobin, J.G., Waddill, G.D. and Pappas, D.P., Phys. Rev. Lett. 68, 3642 (1992).Google Scholar
8 Jankowski, A.F., Waddill, G.D. and Tobin, J.G., Bull. Amer. Phys. Soc. 38 (1), 831 (1993).Google Scholar
9 Tirsell, K.G. and Karpenko, V., Nucl. Instrum. Meth. A 291, 511 (1990).Google Scholar
10 Terminello, L.J., Waddill, G.D. and Tobin, J.G., Nucl. Instrum. Meth. A 319, 271 (1992).Google Scholar
11 Erskine, J.L. and Stern, E.A., Phys. Rev. B 12, 5016 (1975).Google Scholar
12 Thole, B.T. and van der Laan, G., Phys. Rev. A 38, 1943 (1988); B 42, 6670 (1990).Google Scholar
13 Thole, B.T., Carra, P., Sette, F. and vander Laan, G., Phys. Rev. Lett. 68, 1943 (1992).Google Scholar
14 Carra, P., Thols, B.T., Altarelli, M. and Wang, X., Phys. Rev. Lett. 70, 694 (1993).Google Scholar