Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:01:46.434Z Has data issue: false hasContentIssue false

Observation Of Photorefractive Effect In A Second Order Nonlinear Optical Chromophore Functionalized Polythiophene Derivative

Published online by Cambridge University Press:  10 February 2011

K. G. Chittibabu
Affiliation:
Center for Advanced Materials, Departments of Chemistry
L. Li
Affiliation:
University of Massachusetts Lowell, Lowell, MA 01854, Molecular Technologies Inc. Westford, MA 01886.
Z. Chen
Affiliation:
Physics
J. Kumar
Affiliation:
Physics
S. K. Tripathy
Affiliation:
Center for Advanced Materials, Departments of Chemistry
Get access

Abstract

We report the observation of photorefractive (PR) effect in a solution processable, thiophene copolymer with a side chain nonlinear optical (NLO) chromophore, poly(3- octylthiophene-co-N-(3-thenyl)-4-amino-2-nitrophenol) [POMDT]. The copolymer exhibits moderately fast photoconductivity. When doped with second order NLO active azo dye, this copolymer exhibited large second order NLO activity, and low asymmetric two beam coupling (TBC) gain. Enhanced TBC gain was observed, when this composite material was plasticized. The observed photorefractive response time is of the order of seconds. The slower response is attributed to the presence of large volume fraction of the plasticizer in the composition, which reduces the charge carrier mobility. The results from photoconductivity, second harmonic generation and two beam coupling experiments are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Photorefractive materials and their applications, Gunter, P., Huiguard, J. P., Eds.; Springer-Verlag: Berlin, 1988; Vols. I & II.Google Scholar
2 Ducharme, S., Scott, J. C., Twieg, R. J., and Moerner, W. E., Phys. Rev. Lett., 66, 1846 (1991).Google Scholar
3 Kukhtarev, N. V., Markov, V. B., Odulov, S. G., Soskin, M. S. and Vinetskii, V. L., Ferroelectrics, 22, 949 (1979).Google Scholar
4 Moerner, W. E. and Silence, S. M., Chem. Rev., 94, 127 (1994).Google Scholar
5 Meerholz, K., Volodin, B. L., Kippelen, Sandalphon, B., Peyghambarian, N., Nature, 371, 497, (1994).Google Scholar
6. Srczyk, M. E., Zieba, J. and Prasad, P. N., J. Phys. Chem., 98, 8699 (1994).Google Scholar
7 Donckers, M. C. J. M., Silence, S. M., Walsh, C. A., Hache, F., Burland, D. M., Moerner, W. E., and Twieg, R. J., Opt. Lett., 18, 1044 (1993).Google Scholar
8 Silence, S. M., Scott, J. C., Hache, F., Ginsburg, E. J., Jenkner, P. K., Miller, R. D., Twieg, R. J. and Moerner, W. E., J. Opt. Soc. Am. B, 10, 2306 (1993).Google Scholar
9. Silence, S. M., Scott, J. C., Stankus, J. J., Moerner, W. E., Moylan, C. R., Bjorklund, G. C., and Twieg, R. J., J. Phys. Chem., 99, 4096 (1995).Google Scholar
10 a) Yu, L., Chan, W., Bao, Z. and Cao, S. X. F., Macromolecules, 26, 2216 (1993). b) K. Tamura, A. B. Padias, H. K. Hall, W. Peyghambarian, Appl. Phys. Lett. 60, 1803 (1992).Google Scholar
11 Valley, G. C., Klein, M. B., Mullen, R. A., Rytz, D., and Wechsler, B., Ann. Rev. Mater. Sci., 18, 165 (1988) and references cited therein.Google Scholar
12 Tsumura, A., Koezuka, H. and Ando, T., Synth. Met., 25, 11 (1988),Google Scholar
13 a)Garnier, F., Horowitz, G., Peng, X. Z. and Fichou, D., Adv. Mater., 2, 592 (1990). b) F. Gamier, G. Horowitz, X. Z. Peng and D. Fichou, Synth. Met., 45, 163 (1991).Google Scholar
14 Physics of Amorphous Materials, Elliott, S. R., second edition, Longman, New York, 1990, Ch.6.Google Scholar
15 Chittibabu, K. G., Li, L., Kamath, M., Kumar, J. and Tripathy, S. K., Chem. Mater., 6, 475 (1994).Google Scholar