Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:12:30.776Z Has data issue: false hasContentIssue false

Observation of CdSe Colloidal Nano-Dot Films by Scanning Probe Microscopy

Published online by Cambridge University Press:  17 March 2011

Ichiro Tanaka
Affiliation:
Department of Materials Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
Eri Kawasaki
Affiliation:
Department of Materials Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
O. Ohtsuki
Affiliation:
Department of Materials Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
S. Saita
Affiliation:
Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
I. Kamiya
Affiliation:
Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
Get access

Abstract

We observed the surface topography of CdSe colloidal nano-dot film by cyclic contact mode atomic force microscopy. The observed structure changes with cantilever oscillation amplitude, and non-uniform images with long-range corrugations are obtained with relatively large oscillation amplitude while fine structures are revealed with smaller oscillation amplitude. When the amplitude is larger and the surface is weakly ‘tapped’, the topography of the soft organic matrix of the film dominates, and when the tapping force is increased, the hard CdSe dots begin to reveal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Sakaki, Solid State Commun., 92, 119 (1994); H. Sakaki and Y. Arakawa, Appl. Phys.Lett., 40, 939 (1982).Google Scholar
2. , Bimberg, Semiconductors 33, 951 (1999).Google Scholar
3. , Murray, Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc., 115, 8706 (1993).Google Scholar
4. , Guzelian, Banin, U., Kadavanich, A. V., Peng, X., and Alivisatos, A. P., Appl. Phys. Lett., 69, 1432 (1994).Google Scholar
5. , Chan and Nie, S., Science, 281, 2016 (1998); M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998).Google Scholar
6. , Maenosono, Dushkin, C. D., Saita, S., and Yamaguchi, Y., Jpn. J. Appl. Phys., 39, 4006 (2000).Google Scholar
7. , Danek, Jensen, K. F., Murray, C. B., and Bawendi, M. G., Chem. Mater., 8, 173 (1996); X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alvisatos, J. Am. Chem. Soc., 119, 7019 (1997).Google Scholar
8. , Nonnenmacher, Greschner, J., Wolter, O., and Kassing, R., J. Vac. Sci. Technol., B9, 1358 (1991).Google Scholar