Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:32:00.842Z Has data issue: false hasContentIssue false

Numerical Simulation of Surface Diffusion Controlled Motion and Shape Change of Electromigration Voids

Published online by Cambridge University Press:  15 February 2011

O. Kraft
Affiliation:
now at Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
U. E. Mockl
Affiliation:
Max-Planck-Institut ftir Metallforschung and Institut ftir Metallkunde der Universitdt, Seestr. 71, D-70174 Stuttgart,Germany
E. Arzt
Affiliation:
Max-Planck-Institut ftir Metallforschung and Institut ftir Metallkunde der Universitdt, Seestr. 71, D-70174 Stuttgart,Germany
Get access

Abstract

In order to simulate void motion and shape change of electromigration voids a numerical model was developed in which electromigration-driven diffusion on the void surfaces is assumed to act as the primary transport mechanism. The simulation describes the motion and shape evolution of a "two-dimensional void" having a simple initial shape in an isotropic medium. The current density distribution in the vicinity of a void was calculated by the application of a finite element method. Subsequently, the void shape changes by surface diffusion were examined using a finite difference scheme which includes the influence of gradients in curvature along the void surface. The model has been extended to allow other diffusion pathways, such as grain boundaries. The often observed faceting of voids and the formation of slit-like voids are discussed on the basis of simulations in which anisotropic surface tension and anisotropic surface diffusivity were assumed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanchez, J.E., Kraft, O., and Arzt, E., Appl. Phys. Lett. 61, 31213123 (1992).Google Scholar
2. Sanchez, J.E. Jr., McKnelly, L.T., and Morris, J.W. Jr., J. Appl. Phys. 72, 32013203 (1992)Google Scholar
3. Rose, J.H., Appl. Phys. Lett. 61, 21702172 (1992).Google Scholar
4. Sanchez, J.E. Jr., McKnelly, L.T., and Morris, J.W. Jr., J. El. Mat's. 19, 12131220 (1990).Google Scholar
5. Besser, P.R., Madden, M., and Flinn, P.A., J. Appl. Phys. 72, 37923797 (1992).Google Scholar
6. Kraft, O., Bader, S., Sanchez, J.E. Jr.,.and Arzt, E., in Materials Reliability in Microelectronics III (MRS Symp. Proc. 309, Pittsburgh, PA, 1993) pp. 199204.Google Scholar
7. Arzt, E., Kraft, O., Nix, W.D., and Sanchez, J.E., J. Appl. Phys. 76, 15631571 (1994).Google Scholar
8. Marieb, T., Flinn, P., Bravman, J.C., Gardner, D., and Madden, M., J. Appl. Phys. 78, 10261032 (1995).Google Scholar
9. Arzt, E., Kraft, O., and Möckl, U.E., in Materials Reliability in Microelectronics IV (MRS Symp. Proc. 338, Pittsburgh, PA, 1994) pp. 397408.Google Scholar
10. Kraft, O., Mdckl, U.E., and Arzt, E., Quality and Reliability Eng. Int. 11, 279283 (1995).Google Scholar
11. Möckl, U.E., Bauer, M., Kraft, O., Sanchez, J.E. Jr., and Arzt, E., in Materials Reliability in Microelectronics IV (MRS Symp. Proc. 338, Pittsburgh, PA, 1994) pp. 373378.Google Scholar
12. Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 19441946 (1994).Google Scholar
13. Yang, W., Wang, W., and Suo, Z., J. Mech. Phys. Solids 42, 897911 (1994).Google Scholar
14. Maroudas, D., Appl. Phys. Lett. 67, 798800 (1995).Google Scholar
15. Maroudas, D. and Pantelides, S.T., in Materials Reliability in Microelectronics (MRS Symp. Proc. 391, Pittsburgh, PA, 1995) pp. 151162.Google Scholar
16. Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 20632065 (1995).Google Scholar
17. Kraft, O. and Arzt, E., submitted to Acta Met.Google Scholar
18. Weast, R.C., Astle, M.J., and Beyer, W.H., Handbook of Chemistry and Physics (CRC Press, Inc., Boca Raton, Florida, 1984) 65th Edition.Google Scholar
19. JCPDS-Karte 4–787 (International Centre for Diffraction Data, Swathmore, Pennsylvannia).Google Scholar
20. Martin, J.W. and Doherty, R.D., Stability of microstructure in metallic systems. Cahn, R. W., Forty, A. J., and Ward, I. M., Eds., Cambridge Solid State Science Series (Cambridge University Press, Cambridge, 1976).Google Scholar
21. Hasunuma, M., Kaneko, H., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S., and Miyauchi, M., International Conference on Electron Devices and Materials (IEEE, New York 1989) pp. 677–680.Google Scholar
22. Kaneko, H., Hasunuma, M., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S., and Miyauchi, M., International Reliability Physics Symposium (IEEE, New York 1990) pp. 194199.Google Scholar
23. Joo, Y.-C. and Thompson, C.V., in Materials Reliability in Microelectronics III (MRS Symp. Proc. 309, Pittsburgh, PA, 1993) pp. 351–356.Google Scholar
24. Joo, Y.-C. and Thompson, C.V., in rials Reliabilty in Microelectronics IV Symp. Proc. 338, Pittsburgh, PA, 1994) pp. 319324.Google Scholar
25. Sundquist, B.E., Acta Met. 12, 6786 (1964).Google Scholar
26. Ehrlich, G. and Stolt, K., Ann. Rev. Phys. Chem. 31, 603 (1980).Google Scholar