Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T20:49:32.118Z Has data issue: false hasContentIssue false

Nucleation and Growth of Diamond Thin Films: The Role of Temperature and Pressure

Published online by Cambridge University Press:  01 February 2011

J. Morales
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás, Nuevo León 66450 México
R. Bernal
Affiliation:
Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-088, Hermosillo, Sonora 83190 México
C. Cruz-Vazquez
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora 83000 México
E.G. Salcido-Romero
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora 83000 México
V.M. Castaño
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, A. P. 1–1010, Querétaro, Querétaro 76000 México
Get access

Abstract

Diamond thin films were deposited onto Si (100) substrates using liquid a solution of water and acetone, ethanol, methanol and commercial Tequila as precursors by the Pulsed Liquid Injection Chemical Vapor Deposition (PLICVD) technique. Temperature was varied from 550 °C to 850 °C. In this work we attempted to find a crystal diameter dependence on temperature and pressure from the experimental data. The goal in this work is to found a function that can be adjusted to the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Apátiga, L.M. and Castaño, V.M., Appl. Phys. Lett., 83 (2003) 45424543.Google Scholar
[2] Spear, K.E., J. Am. Ceram. Soc. 72 (1989) 171.Google Scholar
[3] Spear, K.E., J. Am. Ceram. Soc. 72 (1989) 171.Google Scholar
[4] Zhang, M., Xia, Y., Wang, L., Gu, B., Int. J. Mod. Phys. B 37, 3198 (2004)..Google Scholar
[5]. Morales, J., Apatiga, L. M., Castaño, V. M., Surf. Coat. Tech. 203, 610 (2008).Google Scholar
[6]. Morales, J., Apatiga, L. M., Castaño, V. M., Full technical paper available online: http://arxiv.org/ftp/arxiv/papers/0806/0806.1485.pdfGoogle Scholar
[7] Hirose, H. and Terasawa, Y., Jpn. J. Appl. Phys., 25 (1986) L519–L521.Google Scholar
[8] Bachmann, P.K., Leers, D., Lydtin, H., Diamond Relat. Mater. 1 (1991) 1.Google Scholar
[9] Morales, J., Apatiga, L. M., Castaño, V. M., Surf. Coat. Tech. 203, 610 (2008)..Google Scholar
[10] dieu, C. Dubour *, a, Rosina, M. a,1, Audier, M. a, eissa, F.W, Se'nateur, J.P. a, Dooryhee, E. b, Hodeau, J.L. b. Thin Solid Films 400 (2001) 8184.Google Scholar
[11] Suilik, S.B. Abu, Shimamoto, D., Kitagawa, H., Hasezaki, K., Noda, Y.. Diamond & Related Materials 15 (2006) 17651772 Google Scholar