Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T11:57:51.132Z Has data issue: false hasContentIssue false

Novel Sol-Gel Processed Photorefractive Materials

Published online by Cambridge University Press:  15 February 2011

Ryszard Burzynski
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
Saswati Ghosal
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
Martin K. Casstevens
Affiliation:
Laser Photonics Technology, Inc., 1576 Sweet Home Rd., Amherst, NY 14228
Yue Zhang
Affiliation:
ROI Technology, Optical Materials Division, 2000 Cornwall Road, Monmouth Junction, NJ 08852
Get access

Abstract

We report the development and characterization of a new photorefractive multifunctional ormosil consisting of a second-order nonlinear optical chromophore and a charge transporting group covalently bound to a silicon atom. The sol-gel technique is used to process this ormosil into a homogeneous, single-phase material which exhibits electrooptic and charge transporting properties. When doped with a photocharge generation sensitizer, the material shows photorefractivity as evidenced by the electric field dependence of the four-wave mixing diffraction efficiency and that of the two-beam coupling gain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Photorefractive Materials and Their Applications. I & II, edited by Gunter, P. and Huignard, J. P., Topics in Applied Physics, Vols. 61 and 62 (Springer-Verlag, New York, 1988); P. C. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).Google Scholar
2. For a complete review, see Zhang, Y., Burzynski, R., Ghosal, S. and Casstevens, M. K., Adv. Mater., 8, 111 (1996);W. E. Moerner and S. M. Silence, Chem. Rev., 94, 127 (1994).Google Scholar
3. Ducharme, S., Scott, J. C., Twieg, R. J., and Moerner, W. E., Phys. Rev. Lett., 66, 1864 (1991); Y. P. Cui, Y. Zhang, P. N. Prasad, J. S. Schildkraut, and D. J. Williams, Appl. Phys. Lett., 61, 2132 (1992).Google Scholar
4. Zhang, Y., Cui, Y. P., and Prasad, P. N., Phys. Rev. B, 46, 9900 (1992); Y. Zhang, C. A. Spencer, S. Ghosal, M. K. Casstevens and R. Burzynski, Appl. Phys. Lett., 64, 1908 (1994); K. Meergolz, B. L. Volodin, Sandalphon, B. Kippelen and N. Peyghambarian, Nature, 371 (1994); M. E. Orczyk, B. Swedek, J. Zieba and P. N. Prasad, J. Appl. Phys., 76, 4995 (1994).Google Scholar
5. Yokoyama, K., Arishima, K., Shimada, T., Sukegawa, K., Jpn. J. Appl. Phys., 33, 1029 (1994); R. Burzynski, Y. Zhang, S. Ghosal, M. K. Casstevens, J. Appl. Phys., 78, 6903 (1995); Y. Zhang, S. Ghosal, M. K. Casstevens and R. Burzynski, Appl. Phys. Lett., 66, 256 (1995); S. M. Silence, J. C. Scott, J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, and R. J. Twieg, J. Phys. Chem., 99, 4096 (1995).Google Scholar
6. Kippelen, B., Tamura, K., Peyghambarian, N., Padias, A. B., Hall, H. K. Jr., J. Appl. Phys., 74, 3617 (1993); L. P. Yu, K. M. Chen, W. K. Chan, Z. H. Peng, Appl. Phys. Lett., 64, 2489 (1994).Google Scholar
7. Sol Gel Technology for Thin Films. Fibers. Preforms. Electronics and Speciality ShaeM, edited by Klein, L. C. (Noyes Publications, Park Ridge, 1988).Google Scholar
8. Burzynski, R., Prasad, P. N. in Sol-Gel Optics. Processing and Applications, edited by Klein, L. C., (Kulver Academic Publisher, Boston, 1994) Chapter 19, pp. 417450.Google Scholar
9. Prasad, P. N., Orczyk, M. E., Zieba, J., Swedek, B., Zhao, C. F., Park, H. K., Burzynski, R., Zhang, Y., Ghosal, S., and Casstevens, M. K., Proc. SPIE, 2527, 231 (1995).Google Scholar
10. Perlstein, J. H. in Electrical Properties of Polymers, edited by Seanor, D.A. (Academic Press, New York, 1982).Google Scholar
11. Teng, C. C. and Man, H. T., Appl. Phys. Lett., 56, 1734 (1990).Google Scholar
12. Schildkraut, J. S., Appl. Phys. Lett., 58, 340 (1991).Google Scholar
13. Zhang, Y., Spencer, C. A., Ghosal, S., Casstevens, M. K., and Burzynski, R., J. App. Phys., 76, 671 (1994).Google Scholar
14. Mahgerefeth, D., Feinberg, J., Phys. Rev. Lett., 64, 2195 (1990).Google Scholar
15. Scott, J. C., Pautmeier, L. Th., and Moerner, W. E., J. Opt. Soc. Am. B, 9, 2059 (1992).Google Scholar
16. Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Polymers and Molecules (Wiley, New York, 1991).Google Scholar
17. The rationale in performing experiments in this manner was to obtain electrooptic data that would be close for both thick and thin films. A non-centrosymmetric order and, thus, second-order optical nonlinearity induced by the electric field poling in 100 μm or more thick films can be quite different from that obtained in thin films because of difficulties in applying external fields of the same magnitude. As an example, 1 μm thick film can easily be poled at fields as high as 100 V/μm or 1 MV/cm; to obtain the same field across a 100 μm thick field would require application of a 10 kV DC bias.Google Scholar
18. Yu, L., Chem, Y. M., and Chan, W. K., J. Phys. Chem., 99, 2797 (1995).Google Scholar