Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T12:24:03.687Z Has data issue: false hasContentIssue false

Novel Silicone-Epoxy Composites for Dental Restorations

Published online by Cambridge University Press:  17 February 2014

Liyun Ren
Affiliation:
Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Vaibhav Pandit
Affiliation:
Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Amanda Mixon
Affiliation:
Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Crivello James
Affiliation:
Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Shiva P. Kotha
Affiliation:
Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.
Get access

Abstract

A novel silicone-epoxy oligomer was synthesized and evaluated for its use as the polymer in photopolymerizable dental composites. This synthesized oligomer contained rigid and non-rigid groups with 1-8 epoxy functionalities as characterized using 1H NMR and 29Si NMR and MALDI-TOF analysis. In comparison to the traditional BisGMA/TEGDMA monomer system, the photo-polymerized silicone-epoxy demonstrated significantly improved material properties (148% greater elastic modulus, 12% greater ultimate strength, 48% greater fracture toughness), as well as 61% lower polymerization shrinkage and 58% lower polymerization stresses. Furthermore, the silicone-epoxy system demonstrated enhanced resistance to degradation of its material properties after accelerated (24hr) aging, i.e. exposure to severe hydrolytic (boiling in ethanol at 100 ᵒC), oxidative (exposed to 5% H2O2), and low pH (0.05M acetic acid) stress. Under these conditions, the properties of conventional BisGMA/TEGDMA systems deteriorated by 22-47%, while the properties of the silicone-epoxy composites decreased by 2-10%. Bisphosphonate additives enhanced the precipitation of mineral in a dose-dependent manner, but inhibited polymerization due to interactions with epoxy groups. Bisphosphonate additives also dose-dependently demonstrated anti-bacterial efficacy as demonstrated using live-dead, MTT and crystral violet assays. The silicone-epoxy polymer was demonstrated to be biocompatible when compared to tissue culture plastic. When calcium fluoride was incorporated into this system, fluoride was found to be released quantities significant enough to engender anti-bacterial effects. In summary, the designed multifunctional dental resin exhibits higher stability as demonstrated by lower chemical, mechanical and enzymatic degradation.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braga, R. R.; Ballester, R. Y.; Ferracane, J. L. Dent Mater 2005, 21, 962.CrossRefGoogle Scholar
Davidson, C. L.; Feilzer, A. J. J Dent 1997, 25, 435.CrossRefGoogle Scholar
Kleverlaan, C. J.; Feilzer, A. J. Dent Mater 2005, 21, 1150.CrossRefGoogle Scholar
Choi, K. K.; Ferracane, J. L.; Ryu, G. J.; Choi, S. M.; Lee, M. J.; Park, S. J. Oper Dent 2004, 29, 462.Google Scholar
Perdigao, J.; Duarte, S.; Gomes, G. J Adhes Sci Technol 2009, 23, 1201.CrossRefGoogle Scholar
Koin, P. J.; Kilislioglu, A.; Zhou, M.; Drummond, J. L.; Hanley, L. J Dent Res 2008, 87, 661.CrossRefGoogle Scholar
Ferracane, J. L. Dent Mater 2006, 22, 211.CrossRefGoogle Scholar
Ferracane, J. L. Dent Mater 2011, 27, 29.CrossRefGoogle Scholar
Seiss, M.; Langer, C.; Hickel, R.; Reichl, F. X. Arch Toxicol 2009, 83, 1109.CrossRefGoogle Scholar
Yourtee, D. M.; Smith, R. E.; Russo, K. A.; Burmaster, S.; Cannon, J. M.; Eick, J. D.; Kostoryz, E. L. J Biomed Mater Res 2001, 57, 522.3.0.CO;2-9>CrossRefGoogle Scholar
FDA; Administration, U. S. F. a. D., Ed. 2013; Vol. http://www.fda.gov/%20newsevents/publichealthfocus/ucm064437.htm.Google Scholar
Porto, I. C.; de Aguiar, F. H.; Brandt, W. C.; Liporoni, P. C. J Dent 2013, 41, 732.CrossRefGoogle Scholar
Arocha, M. A.; Mayoral, J. R.; Lefever, D.; Mercade, M.; Basilio, J.; Roig, M. Clin Oral Investig 2013, 17, 1481.CrossRefGoogle Scholar
Borges, A. F.; Santos Jde, S.; Ramos, C. M.; Ishikiriama, S. K.; Shinohara, . Dent Mater J 2012, 31, 1054.CrossRefGoogle Scholar
Wu, X.; Deng, F.; Wang, L.; Watts, D. C. Microsc Res Tech 2012, 75, 1176.CrossRefGoogle Scholar
Wellner, P.; Mayer, W.; Hickel, R.; Reichl, F. X.; Durner, J. Dent Mater 2012, 28, 743.CrossRefGoogle Scholar
Krifka, S.; Seidenader, C.; Hiller, K. A.; Schmalz, G.; Schweikl, H. Clin Oral Investig 2012, 16, 215.CrossRefGoogle Scholar
Burke, F. J.; Crisp, R. J.; James, A.; Mackenzie, L.; Pal, A.; Sands, P.; Thompson, O.; Palin, W. M. Dent Mater 2011, 27, 622.CrossRefGoogle Scholar
Goncalves, F. S.; Leal, C. D.; Bueno, A. C.; Freitas, A. B.; Moreira, A. N.; Magalhaes, C. S. Am J Dent 2013, 26, 93.Google Scholar
Gao, B. T.; Lin, H.; Zheng, G.; Xu, Y. X.; Yang, J. L. Dent Mater J 2012, 31, 76.CrossRefGoogle Scholar
Crivello, J. V.; Mao, Z. B. Chemistry of Materials 1997, 9, 1554.CrossRefGoogle Scholar
Yang, X.; Huang, W.; Yu, Y. Journal of Applied Polymer Science 2011, 120, 1216.CrossRefGoogle Scholar
Watts, D. C.; Cash, A. J. Dent Mater 1991, 7, 281.CrossRefGoogle Scholar