Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:33:09.031Z Has data issue: false hasContentIssue false

Novel Self-Complimentary Tricyclic Heterocycles: Expanding the Chemistry of Self-Assembled Rosette Nanotubes

Published online by Cambridge University Press:  01 February 2011

Gabor Borzsonyi
Affiliation:
National Institute for Nanotechnology, Supramolecular Nanoscale Assembly Group, 11421 Saskatchewan Drive, Edmonton, T6G2M9, Canada, 780-641-1755, 780-641-1601
Andrew J. Myles
Affiliation:
[email protected], National Institute for Nanotechnology, Edmonton, T6G2M9, Canada
Ross Johnson
Affiliation:
[email protected], National Institute for Nanotechnology, Edmonton, T6G2M9, Canada
Jae-Young Cho
Affiliation:
[email protected], National Institute for Nanotechnology, Edmonton, T6G2M9, Canada
Takeshi Yamazaki
Affiliation:
[email protected], National Institute for Nanotechnology, Edmonton, T6G2M9, Canada
Andriy Kovalenko
Affiliation:
[email protected], National Institute for Nanotechnology, Edmonton, T6G2M9, Canada
Hicham Fenniri
Affiliation:
[email protected], National Institute for Nanotechnology, Edmonton, T6G2M9, Canada
Get access

Abstract

In an effort to increase the internal and external diameter of the RNT's, tricyclic GΛC base derivatives (XGΛC) have been synthesized and characterized. Hierchichal self-assembly results in formation of RNT's with an increased diameter, as evidenced by AFM and TEM measurements. Progress on the derivitization and characterization of the XGΛC RNT's will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] (a) Lehn, J.-M. Angew. Chem.Int. Ed. 1990, 29, 13041319. (b) Engelkamp, H; Middelbeek, S.; R. J. M. Nolte Science 1999, 284, 785-788. Chun, A. L.; Moralez, J. M; Webster, T. J.; Fenniri, H Biomaterials 2005, 26, 7304-7309. (c) Yamamoto, Y.; Fukushima, T.; Suma, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagava, S.; Taniguchi, M.; Kawai, T.; Aida, T. Science 2006, 314, 1761-1764. d) Supramolecular Dye Chemistry; Würthner, F., Ed. Top. Curr. Chem. 2005, 258, 1–313. (e) Supramolecular Materials and Technologies; Reinhoudt, D. N., Ed.; Perspectives in Supramolecular Chemistry, Vol. 4; Lehn, J.–M.; John Wiley & Sons, Chicester, England, 1999.Google Scholar
[2] (a) Harada, A., Li, J., Kamachi, M., Nature 1993, 364, 516518. (b) Klok, H.–A.; Jollife, K. A.; Schauer, C. L.; Prins, L. J.; Spatz, J. P.; Müller, M.; Timmerman, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 1999, 121, 7154–7155. (c) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276, 384–389. (d) Hill, J. P.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481–1483. (e) Tian, Z.; Chen, Y.; Yang, W.; Yao, J.; Zhu, L.; Shuai, Z. Angew. Chem. Int. Ed. 2004, 43, 4060–4063. (f) Davis, J. T. Angew. Chem. Int. Ed. 2003, 43,668–698. (g) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem Rev. 2005, 105, 1491–1546. (h) Grimsdale, A. C.; Müllen, K. Angew. Chem. Int. Ed. 2005, 44, 5592– 5629. (i) Keizer, H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226–234. (j) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem. Int. Ed. 2006, 45, 38–68. (k) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich Nature 1993, 366, 324–327. (l) Hill, J.; Jin, W.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimimura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-1483. (m) Elemans J. A. A. W.; Hameren, R. V.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006, 18, 1251-1266.Google Scholar
[3] (a) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 13121319. (b) Martin, T.; Obst, U.; Rebek Jr., J Science 1998, 281, 1842-1845. (c) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E. W. Proc. Nat. Ac. Sci. 2002, 99, 4977-4982. (d) Schmittel, M.; Kalsani, V. Top. Curr. Chem. 2005, 245, 1-53. (e) Keizer, H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226-234. (f) Hoeben, F. J. M.; Jonkheim, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491-1546.Google Scholar
[4] (a) Marsh, A.; Silvestri, M.; Lehn, J.-M. Chem. Comm. 1996., 15271528.Google Scholar
[5] (a) Mascal, M.; Hext, N. M.; Warmuth, R.; Moore, M. H.; Turkenburg, J. P. Angew. Chem. Int. Ed. 1996, 35, 22042206. (b) Mascal, M.; Hext, N. M.; Warmuth, R.; ArnalllCuliford, J. R.; Moore, M. H.; Turkenburg, J. P. J. Org. Chem.1999, 64, 8479-8484.Google Scholar
[6] (a) Fenniri, H.; Mathivanam, P.; Vidale, K. L.; Sherman, D. M.; Hallenga, K.; Wood, K. V.; Stowell, J. G. J. Am. Chem. Soc. 2001, 123, 38543855. (b) Fenniri, H.; Deng, B.-L.; Ribbe, A. E. J. Am. Chem. Soc. 2002, 124, 11054-11072. (c) Fenniri, H.; Deng, B.-L.; Ribbe, A. E.; Hallenga, K.; Jacob, J.; Thiyagarajan, P. Proc. Nat. Ac. Sci. 2002, 99, 6487-6492.Google Scholar
[7] (a) Marsh, A.; Nolen, E. G.; Gardinier, K. M.; Lehn, J.-M. Tet. Lett. 1994, 35, 397400. (b) Petersen, P. M.; Wu, W.; Fenlon, E. E.; Kim, S.; Zimmerman, S. C. Bioorganic and Medicinal Chem. 1996, 4, 1107-1112.Google Scholar
[8] (a) Yang, C.-W.; Hwang, I.-S.; Chen, Y. F.; Chang, C. S.; Tsai, D. P. Nanotechnology 2007, 18, 18. (b) Kasumov, A. Y.; Klinov, D. V.; Roche, P. E.; Gueron, S.; Bouchiat, H. Appl. Phys. Lett. 2004, 84, 1007-1009.Google Scholar