Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:53:42.447Z Has data issue: false hasContentIssue false

Novel Piezoelectric Heterostructure for all-Optical Infrared Light Modulation

Published online by Cambridge University Press:  10 February 2011

V. Ortiz
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, SP2MIPSC, 17 rue des Martyrs, 38054 Grenoble, France
N. T. Pelekanos
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, SP2MIPSC, 17 rue des Martyrs, 38054 Grenoble, France
Guido Mula
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, SP2MIPSC, 17 rue des Martyrs, 38054 Grenoble, France INFM and Dipartimento di Scienze Fisiche, Università degli Studi di Cagliari, 09124 Cagliari, Italy
Get access

Abstract

We present an innovative-design heterostructure based on the exploitation of in-the-barrier piezoelectric field for all-optical light modulation. The novel layout allows an efficient light modulation with low power densities (few tens of W/cm2), easily attainable with standard laser diodes. The modulation mechanism relies upon drastic photocarrier separation by the piezoelectric field in the barrier layers. We present room temperature results showing that an optical “control” power of 70 W/cm2 creates in the heart of the structure a space-charge field of about 30 kV/cm, inducing large spectral shifts (∼100 nm) in the photoluminescence spectra of a CdHgTe quantum well in the 1.5 μm range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Partovi, A., Glass, A.M., Chiu, T.H., Liu, D.T.H., Optics Letters 18, 906 (1993).Google Scholar
2. Smith, D.L. and Mailhiot, C., Phys. Rev. Lett. 58, 1264 (1987).Google Scholar
3. Moise, T.S., Guido, L.J., Barker, R.C., White, J.O., Kost, A.R., Appl. Phys. Lett. 60, 2637 (1992).Google Scholar
4. Livingstone, M., 1. Galbraith, Wherrett, B.S., Appl. Phys. Lett. 65, 2771 (1994).Google Scholar
5. Smith, D.L. and Mailhiot, C., Rev. Mod. Phys. 62, 173 (1990).Google Scholar
6. Anastassakis, E., Phys. Rev. B 46, 4744 (1992).Google Scholar
7. Caridi, E.A., Chang, T.Y., Goossen, K.W., and Eastman, L.F., Appl. Phys. Lett. 56, 659 (1990).Google Scholar
8. André, R., Deshayes, C., Cibert, J., Dang, Le Si, Tatarenko, S., and Saminadayar, K., Phys. Rev. B 42, 11392 (1990).Google Scholar
9. Ortiz, V., Pelekanos, N.T., Mula, Guido, in print in J. Crystal Growth (1997).Google Scholar
10. André, R., Ph.D. thesis, Université J. Fourier, Grenoble (1994).Google Scholar
11. The optical charging process results in a PL blueshift here because the optically induced space charge field compensates the pre-existing piezoelectric field in the active QW. This is concomitant with having the piezoelectric field in the barrier and active QW layers along the same direction, in spite of the fact that the former is under dilation and the latter under compression. This implies that the piezoelectric coefficient e 14 has opposite sign in CdMgTe and CdHgTe.Google Scholar
12. Pelekanos, N.T., Mula, Guido, Magnea, N., Pautrat, J.L., in print in Microelectronics Journal (1997).Google Scholar