Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:22:16.648Z Has data issue: false hasContentIssue false

Novel Method for the Activation of Acceptor Dopant in AlN Introducing Localized Band by Isoelectronic Dopant

Published online by Cambridge University Press:  01 February 2011

Toshiyuki Takizawa*
Affiliation:
Semiconductor Device Research Center, Semiconductor Company, Matsushita Electronic Industrial, Co., Ltd., 1–1 Saiwai-cho, Takatsuki, Osaka 569–1193, JAPAN
Get access

Abstract

In this study we propose a novel method to increase hole concentration introducing isovalent substitutional dopant into a p-type nitride semiconductor. Acceptor dopant in nitride semiconductors makes deep acceptor level (>100 meV) and generates few hole carriers into the valence band because of large electron affinity of N.In contrast to this, substitution of isovalent group-V atoms (P, As and Sb) that has smaller affinity than N makes a localized group-V band upward the valence band maximum (VBM). When both acceptor and isovalent group-V atoms are incorporated into nitride semiconductor, holes can be drastically activated by isovalent atoms, and can easily move in the group-V band. We have also investigated this material, Mg-doped AlN:V (V=P, As or Sb), using first-principles pseudopotential method. As a calculation result, substitiution of P and As makes localized group-V band upward the VBM of AlN, and moreover this can be adjusted the VBM of GaN. The Mg incorporation into AlN:V as an acceptor dopant drastically decreases the Fermi level (ΔEF=-0.10 eV), that is, hole concentration can be drastically raised by the group-V band. Consequently novel p-type material with isovalent dopant can be a candidate to efficiently inject hole current into the VBM of GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, New York, 1997).Google Scholar
[2] Kozodoy, P., Xing, H., DenBaars, S. P., Mishra, U. K., Saxler, A., Perrin, R., Elhamri, S. and Mitchel, W. C., J. Appl. Phys. 87, 1832 (2000).Google Scholar
[3] Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
[4] Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
[5] Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
[6] Yamamoto, T. and Yoshida, H K-., Jpn. J. Appl. Phys. 36, L180 (1997).Google Scholar
[7] Korotkov, R. Y., Gregie, J. M. and Wessels, B. W., Appl. Phys. Lett. 78, 222 (2001).Google Scholar
[8] Kozodoy, P., Hansen, M., Xing, H., Den Baars, S. P. and Mishra, U. K., Appl. Phys. Lett. 74, 3681 (1999).Google Scholar
[9] Mattila, T. and Zunger, A., Phys. Rev. B 58, 1367 (1998).Google Scholar
[10] Foxon, C. T., Novikov, S. V., Zhao, L. X. and Harrison, I., Appl. Phys. Lett. 83, 1166 (2003).Google Scholar
[11] Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
[12] Kresse, G. and Hafner, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
[13] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J. and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
[14] Madelung, O., Semiconductor – Basic Data, 2nd ed., (Springer, New York, 1996).Google Scholar
[15] Nam, K. B., Nakami, M. L., Li, J., Lin, J. Y. and Jiang, H. X., Appl. Phys. Lett. 83, 878 (2003).Google Scholar