Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T08:35:48.211Z Has data issue: false hasContentIssue false

A Novel Layer-By-Layer Hetero-Epitaxy Of Germanium On Silicon (100) Surface

Published online by Cambridge University Press:  10 February 2011

S. Sugahara
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8550, Japan
M. Matsuyama
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8550, Japan
K. Hosaka
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8550, Japan
K. Ikeda
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8550, Japan
Y. Uchida
Affiliation:
Department of Electronics and Information Science, Teikyo University of Science and Technology, Uenohara-machi, Yamanashi 409-0193, Japan
M. Matsumura
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 0-okayama, Meguro-ku, Tokyo 152-8550, Japan
Get access

Abstract

Layer-by-layer hetero-epitaxy of Ge has been successfully demonstrated on the Si(100) surface by combining the initial IML-Ge film growth on the Si surface and the successive Ge atomic-layer-epitxy (ALE), for the first time. The former was achieved using the substrate temperature modulation with alternate exposures of GeCL4 and atomic H, and the later was established by cyclic exposures of (CH 3)2GeH2 and atomic H under isothermal conditions. XPS measurements confirmed a discrete and uniform increase in the grown Ge film thickness with one monolayer/cycle step up to the critical Ge thickness, and no C contamination at the Ge/Si interface. Critical exposure for the saturated Ge adsorption was different from that for the homo-ALE on the bulk Ge surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Satpathy, S., Martin, R. M. and Van de Walle, C. G., Phys. Rev. B 38, 13237 (1988).Google Scholar
2. Schmid, U., Christensen, N. E., Alouani, M. and Cardona, M., Phys. Rev. B43, 14597 (1991).Google Scholar
3. Ikeda, M., Terakura, T. and Oguchi, T., Phys. Rev. B48, 1571 (1993).Google Scholar
4. Sugahara, S., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys, 32, 384 (1993)Google Scholar
5. Imai, S., lizuka, T., Sugiura, O. and Matsumura, M., Thin Solid Films 225, 168 (1993).Google Scholar
6. Sugahara, S., Hasunuma, E., Imai, S. and Matsumura, M., Appl. Surf. Sci. 107, 161 (1996).Google Scholar
7. Hasunuma, E., Sugahara, S., Hoshino, S., Imai, S. and Matsumura, M., J. Vac. Sci. Technol. A16, 679 (1998).Google Scholar
8. S. Sugahara, Kitamura, T., Imai, S. and Matsumura, M., Appl. Surf. Sci. 82/83, 380 (1994).Google Scholar
9. Sugahara, S., Kadoshima, M., Kitamura, T., Imai, S. and Matsumura, M., Appl. Surf. Sci. 90,349 (1995).Google Scholar
10. Sugahara, S. and Matsumura, M., Appl. Surf. Sci. 112, 176 (1997).Google Scholar
11. Ikeda, K., Sugahara, S., Uchida, Y., Nagai, T. and Matsumura, M., Jpn. J. Appl. Phys., 37, 1311 (1998).Google Scholar
12. Sugahara, S., Kitamura, T., Imai, S., Uchida, Y. and Matsumura, M., Appl. Surf. Sci. 107, 137 (1996).Google Scholar
13. Sugahara, S., Uchida, Y., Kitamura, T., Nagai, T., Matsuyama, M., Hattori, T. and Matsumura, M., Jpn. J. Appl. Phys. 36, 1609 (1997).Google Scholar
14. S. Tanuma, Powell, C.J. and Penn, D.R., Surf. Interface Anal. 21, 165 (1994).Google Scholar
15. Boishin, G. and Surnev, L., Surf. Sci. 345, 64 (1996).Google Scholar
16. D'Evelyn, M. P., Yang, Y.L. and Cohen, S.M., J. Chem. Phys. 101, 2463 (1994).Google Scholar