Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:30:26.387Z Has data issue: false hasContentIssue false

Novel Electrical Conduction of Insulators under Examination of Defects and Injection and Relationship to Theories of Ferroelectric Domains

Published online by Cambridge University Press:  14 July 2014

Y. Watanabe
Affiliation:
Kyushu University, Fukuoka 812-8581, Japan
Y. Urakami
Affiliation:
Kyushu University, Fukuoka 812-8581, Japan Hitachi Central lab., Kokubunji 185-0014, Japan
D. Matsumoto
Affiliation:
Kyushu University, Fukuoka 812-8581, Japan Hitachi Central lab., Kokubunji 185-0014, Japan
S. Kaku
Affiliation:
Kyushu University, Fukuoka 812-8581, Japan Tokyo Institute of Technology, Tokyo 152-8551, Japan
S.-W. Cheong
Affiliation:
Rutgers University, Piscataway, NJ 08854, USA
G. A. Thomas
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07102, USA
S. Miyauchi
Affiliation:
Kyushu University, Fukuoka 812-8581, Japan Murata Co., Izumo 699-0696, Japan
Get access

Abstract

Electrical conductions in insulators such as resistance switching, conduction at interfaces, and conduction at domain boundaries and free surface of ferroelectrics are of interest. These conductions are often attributed to novel mechanism such as ferroelectric polarization. On the other hand, these interpretations appear not fully accepted, because the recent advanced theories of ferroelectric domains disregard screening indicated by these conduction phenomena. That is, these conduction phenomena are quietly regarded as the classical conduction originating from defects. In this paper, we examine these conductions in pure wide bandgap insulators in view of defects, using the direct-accessibility (tangibility) of conduction at free surfaces. Although most of these conductions in ferroelectrics may not be useful in large-scale applications, we show that they have fundamental implications on renovations of ferroelectric basics.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beck, A. et al. ., Appl. Phys. Lett. 77, 139 (2000).CrossRefGoogle Scholar
Zhuang, W. et al. ., Digest of Electron Devices Meeting 2002 (IEDM ’02), p. 193.CrossRefGoogle Scholar
Watanabe, Y. et al. ., Appl. Phys. Lett. 72, 2415 (1998).CrossRefGoogle Scholar
Watanabe, Y. and Okano, M., J. Appl. Phys. 94, 7187 (2003); Phys. Rev. B57, R5563(1998).CrossRefGoogle Scholar
Choi, T. et al. ., Science 324, 63(2009).CrossRefGoogle Scholar
Blom, P. et al. ., Phys. Rev. Lett. 73, 2107(1994).CrossRefGoogle Scholar
Pauli, S. A. et al. ., Phys. Rev. Lett. 106, 036101 (2011).CrossRefGoogle Scholar
Siemons, W. et al. ., Phys. Rev. Lett. 98, 196802 (2007).10.1103/PhysRevLett.98.196802CrossRefGoogle Scholar
Wu, W. et al. ., Phys. Rev. Lett. 108, 077203 (2012).CrossRefGoogle Scholar
Watanabe, Y. et al. ., Phys. Rev. Lett. 86, 332(2001).CrossRefGoogle Scholar
Kuffer, O. et al. ., Nature Materials 4, 378 (2005).CrossRefGoogle Scholar
Mathews, S., Science 276, 238(1997).CrossRefGoogle Scholar
Watanabe, Y., Ext. Abst. SSDM’94, 784 (1994); Appl. Phys. Lett. 66, 1770(1995); U.S. Patent No. 5418389 (23 May 1995).Google Scholar
Moos, R. and Härdtl, K. H., J. Appl. Phys. 80, 393 (1996).CrossRefGoogle Scholar
Ahrens, M. et al. ., Physica B 393,239 (2007).Google Scholar
Kiejna, A. and Wojciechowski, K. F., Prog. Surf. Sci. 11,293(1981).CrossRefGoogle Scholar
La Mattina, F., et al. ., Appl. Phys. Lett. 93, 022102 (2008).CrossRefGoogle Scholar
Watanabe, Y. et al. ., Appl. Phys. Lett.78(23), 3738-3740 (2001).CrossRefGoogle Scholar
Alvarado, F. et al. ., Appl. Phys. A 89, 85 (2007).CrossRefGoogle Scholar
Watanabe, Y. et al. ., Physica C235, 739(1994); Appl. Phys. Lett. 66, 28(1995); Phys. Rev. B 59, 11257(1999).CrossRefGoogle Scholar
Watanabe, Y., Phys. Rev. B 81, 195210 (2010); J. Phys. Soc. Jpn.78, 104712-1-10(2009).CrossRefGoogle Scholar
De Souza, R. A., et al. ., Phys. Rev. B 85, 174109 (2012).CrossRefGoogle Scholar
Watanabe, Y., Ferroelectr. 349, 190 (2007).CrossRefGoogle Scholar
Seager, C. H. et al. ., Integrated Ferroelectr. 6, 47 (1995).CrossRefGoogle Scholar
Watanabe, Y. et al. ., Jpn. J. Appl. Phys. 35, 1564 (1996).CrossRefGoogle Scholar
Watanabe, Y., Phys. Rev. B57, 789 (1998); Jpn. J. Appl. Phys. 36, 6162(1997); Ferroelectrics 333, 57 (2006).CrossRefGoogle Scholar
Krcˇmar, M. and Fu, C. L., Phys. Rev. B 68, 115404(2003).CrossRefGoogle Scholar
Cohen, R., Ferroelectr.194, 323 (1997).Google Scholar
Urakami, Y. et al. ., Ferroelectr. 346, 32 (2007).CrossRefGoogle Scholar
Watanabe, Y. et al. , Ferroelectr. 355, 13 (2007).CrossRefGoogle Scholar
Watanabe, Y. et al. , Ferroelectr. 379, 157(2009). S. Kaku et al, J. Korean Phys. Soc. 55, 799(2009).CrossRefGoogle Scholar
Watanabe, Y. et al. , Ferroelectr. 259, 37(2001).CrossRefGoogle Scholar
Watanabe, Y., Ferroelectr. 401, 61(2010).CrossRefGoogle Scholar
Chan, N. H. et al. ., J. Am. Ceram. Soc. 64, 556 (1981).CrossRefGoogle Scholar
Liang, Y. and Bonnell, D., J. Am. Ceram. Soc. 78, 2633 (1995).CrossRefGoogle Scholar
Watanabe, Y. et al. ., Jpn J. Appl. Phys. 33, 5182 (1994)CrossRefGoogle Scholar
Chen, P. et al. ., Phys. Rev. Lett.110, 047601 (2013)CrossRefGoogle Scholar
Watanabe, Y. and Masuda, A., Jpn. J. Appl. Phys. 40 5610(2001)CrossRefGoogle Scholar