Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:44:35.642Z Has data issue: false hasContentIssue false

Novel Anionic Photoacid Generators (PAGs) and Photoresists for sub 50 nm Patterning by EUVL and EBL

Published online by Cambridge University Press:  01 February 2011

Mingxing Wang
Affiliation:
[email protected], UNC-Charlotte, UNC-Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, United States, 1-704-687-8293, 1-704-687-8241
Cheng-Tsung Lee
Affiliation:
[email protected], Georgia Institute of Technology, Atlanta, GA, 30332, United States
Clifford L Henderson
Affiliation:
[email protected], Georgia Institute of Technology, Atlanta, GA, 30332, United States
Wang Yueh
Affiliation:
[email protected], Intel Corp., Hillsboro, OR, 97124, United States
Jeanette M Roberts
Affiliation:
[email protected], Intel Corp., Hillsboro, OR, 97124, United States
Kenneth E Gonsalves
Affiliation:
[email protected], UNC-Charlotte, Department of Chemistry, Charlotte, NC, 28223, United States
Get access

Abstract

A new series of anionic photoacid generators (PAGs), and corresponding polymers were prepared. The thermostability of PAG bound polymers was superior to PAG blend polymers. PAG incorporated into the polymer main chain may improve acid diffusion compared with the PAG blend polymers, which was demonstrated by Extreme Ultraviolet lithography (EUVL) results: the fluorine PAG bound polymer resist gave 45 nm (1:1), 35 nm (1:2), 30 nm (1:3) and 20 nm (1:4) Line/Space as well as 50 nm (1:1) elbow patterned, showed better resolution than the blend sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 International Technology Roadmap for Semiconductors (ITRS) 2005, Lithography, http://public.itrs.net/.Google Scholar
2 Brainard, R. L., Cobb, J., and Cutler, C. A., J. Photopolym. Sci. Technol., 2003, 16, 401.Google Scholar
3 Covert, K. L., Russell, D. J., J Appl. Poylm. Sci,. 1993, 49, 657.Google Scholar
4 Stewart, M. D., Tran, H. V., Schmid, G. M., Stachowiak, T. B., Becker, D. J., and Willson, C. G., J. Vac. Sci. Technol. B, 2002, 20, 2946.Google Scholar
5 Wang, M., Jarnagin, N. D., Yueh, W., Roberts, J. M., Gonsalves, Kenneth E, J. Mater. Chem., 2006, 16, 3701.Google Scholar
6 Wang, M., Gonsalves, K. E., Yueh, W., Roberts, J. M., Macromolecular Rapid Communications, 2006, 27, 1590.Google Scholar
7 Matsuzawa, N. N., Oizumi, H., Mori, S., Irie, S., Yano, E., Okazaki, S., and Ishitani, A., Microelectron. Eng., 2000, 53, 671.Google Scholar
8 Wu, H. and Gonsalves, K.E., Adv. Funct. Mater., 2001, 11, 271.Google Scholar
9 Thiyagarajan, M., Dean, K., and Gonsalves, K. E., J. Photopolym. Sci. Technol., 2005, 18, 737.Google Scholar
10 Pasini, D., Klopp, J. M., and Frechet, J. M. J., Chem. Mater., 2001, 13, 4136.Google Scholar
11 Dean, K. R., Gonsalves, K. E., Thiyagarajian, M., Proc. SPIE- Int. Soc. Opt. Eng., 2006, 61531E/1-61531EGoogle Scholar
12 Chauhan, M. M., Nealey, P. F., J. Vac. Sci. Technol. B, 2000, 18(6), 3402.Google Scholar
13 Hein, S.; Angood, S.; Ashworth, D.; Basset, S.; Bloomstein., T.; Dean, K.; Kunz, R. R.; Miller, D.; Patel, S.; Rich, G.; Proc. SPIE- Int. Soc. Opt. Eng., 2001, 4345, 439.Google Scholar
14 Private communication from Professor Henderson, C. L. and Lee, C. at Georgia Institute of Technology.Google Scholar