Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:47:47.906Z Has data issue: false hasContentIssue false

Nonvolatile resistive switching characteristics of HfO2 with Cu doping

Published online by Cambridge University Press:  01 February 2011

Weihua Guan
Affiliation:
[email protected], Institute of Microelectronics, Chinese Academy of Sciences, Lab of Nano-fabrication and Novel Devices Integrated Technology, No. 3, BeiTuCheng West Road, ChaoYang District, Beijing, 100029, China, People's Republic of
Shibing Long
Affiliation:
[email protected], Institute of Microelectronics, Chinese Academy of Sciences, Lab of Nano-fabrication and Novel Devices Integrated Technology, Beijing, 100029, China, People's Republic of
Ming Liu
Affiliation:
[email protected], Institute of Microelectronics, Chinese Academy of Sciences, Lab of Nano-fabrication and Novel Devices Integrated Technology, Beijing, 100029, China, People's Republic of
Wei Wang
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, Albany, NY, 12203, United States
Get access

Abstract

In this work, resistive switching characteristics of hafnium oxide (HfO2) with Cu doping prepared by electron beam evaporation are investigated for nonvolatile memory applications. The top metal electrode/ hafnium oxide doped with Cu/n+ Si structure shows two distinct resistance states (high-resistance and low-resistance) in DC sweep mode. By applying a proper bias, resistance switching from one state to the other state can be achieved. Though the ratio of high/low resistance is less than an order, the switching behavior is very stable and uniform with nearly 100% device yield. No data loss is found upon continuous readout for more than 104 s. The role of the intentionally introduced Cu impurities in the resistive switching behavior is investigated. HfO2 films with Cu doping are promising to be used in the nonvolatile resistive switching memory devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sawa, A. Fujii, T. Kawasaki, M. and Tokura, Y. Appl. Phys. Lett., 85, 4073 (2004).Google Scholar
2. Lin, C.-C. Tu, B.-C. Lin, C.-C. Lin, C.-H. and Tseng, T.-Y. IEEE Electron Device Lett., 27, 725 (2006).Google Scholar
3. Fujii, T. Kawasaki, M. Sawa, A. Akoh, H. Kawazoe, Y. and Tokura, Y. Appl. Phys. Lett., 86, 012107 (2004).Google Scholar
4. Song, Y. Ling, Q. D. Lim, S. L. Teo, E. Y. H. Tan, Y. P. Li, L. Kang, E. T. Chan, D. S. H. and Zhu, C. IEEE Electron Device Lett., 28, 107 (2007).Google Scholar
5. Park, J.-W. Park, J.-W. Jung, K. Yang, M. K. and Lee, J.-K. J. Vac. Sci. Technol., B 24, 2205 (2006).Google Scholar
6. Choi, B. J. et al. , J. Appl. Phys., 98, 033715 (2005).Google Scholar
7. Lee, D. Choi, H. Sim, H. Choi, D. Hwang, H. Lee, M.-J. Seo, S.-A. and Yoo, I. K. IEEE Electron Device Lett., 26, 719 (2005).Google Scholar
8. Chen, A. Haddad, S. Wu, Y. C. Lan, Z. Fang, T. N. and Kaza, S. Appl. Phys. Lett., 91, 123517 (2007).Google Scholar
9. Schindler, C. Thermadam, S. C. P. Waser, R. and Kozicki, M. N. IEEE Trans. Electron Devices, 54, 2762 (2007).Google Scholar
10.1. Baek, G. et al. , in IEDM Tech. Dig., 587 (2004).Google Scholar
11. Park, I.-S. Kim, K.-R. Lee, S. and Ahn, J. Jpn. J. Appl. Phys., 46, 2172 (2007).Google Scholar
12. Lee, H.-Y. Chen, P.-S. Wang, C.-C. Maikap, S. Tzeng, P.-J. Lin, C.-H. Lee, L.-S. and Tsai, M.-J., Jpn. J. Appl. Phys., 46, 2175 (2007).Google Scholar
13. Guan, W. Long, S. Jia, R. and Liu, M. Appl. Phys. Lett., 91, 062111 (2007).Google Scholar
14. Oligschlaeger, R. Waser, R. Meyer, R. Karthäuser, S., and Dittmann, R. Appl. Phys. Lett., 88, 042901 (2006).Google Scholar
15. Simmons, J. G. and Verderber, R. R. Proc. R. Soc. Lond., A Math. Phys. Sci., 301, 77 (1967).Google Scholar
16. Bozano, L. D. Kean, B. W. Deline, V. R. Salem, J. R. and Scott, J. C. Appl. Phys. Lett., 84, 607 (2004).Google Scholar
17. Sze, S. M. Physics of Semiconductor Device, 2nd ed. New York: Wiley, 1981.Google Scholar
18. Villafuerte, M. Heluani, S. P. Juárez, G., Simonelli, G. Braunstein, G. and Duhalde, S. Appl. Phys. Lett., 90, 052105 (2007).Google Scholar
19. Lee, D. Seong, D. Jo, I. Xiang, F. Dong, R. Oh, S. and Hwang, H. Appl. Phys. Lett., 90, 122104 (2007).Google Scholar