No CrossRef data available.
Published online by Cambridge University Press: 15 June 2012
We proposed and computationally analyzed a nonvolatile power-gating field programmable gate array (NVPG-FPGA) based on pseudo-spin-transistor architecture with spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The circuit employs nonvolatile static random memory (NV-SRAM) cells and nonvolatile flip-flops (NV-FFs) as the storage circuits. The circuit configuration and microarchitecture are compatible with SRAM-based FPGAs, and the additional nonvolatile memory functionality makes it possible to execute efficient power-gating (PG). Break-even time (BET) for the nonvolatile configuration logic block (NV-CLB) of the NVPG-FPGA was also analyzed, and reduction techniques of the BET were proposed, which allows highly efficient PG operations with a fine granularity.