Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:36:07.052Z Has data issue: false hasContentIssue false

Nonvolatile Memory Effects in Doped Tetrahedral Amorphous Carbon Thin Films

Published online by Cambridge University Press:  10 February 2011

E. G. Gerstner
Affiliation:
School of Physics, University of Sydney, New South Wales 2006, Australia. Phone: (612) 9351 2627, Fax: (612) 9351 7725, email: [email protected]
D. R. Mckenzie
Affiliation:
School of Physics, University of Sydney, New South Wales 2006, Australia. Phone: (612) 9351 2627, Fax: (612) 9351 7725, email: [email protected]
Get access

Abstract

Much interest has been shown in the use of tetrahedral amorphous carbon (ta-C) deposited by filtered cathodic arc as an inexpensive, easily produced, wide band-gap semiconductor in the fabrication of electronic devices. There has, however, been limited success in producing devices with properties that might make its use in electronic applications commercially viable, which in part may be due to the high density of electronic trap states as reflected in ta-C's rather high ESR signal of ∼ 1020 spin/g. Recent results at the University of Sydney suggest, however, that a new range of possibilities exist in the utilisation of these traps as a means of producing nonvolatile digital information storage. Devices with write times of 100 μs, read times of 100 ns, and effective memory retention times approaching 1 year, have been fabricated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McKenzie, D. R., Muller, D. A., Pailthorpe, B. A., Wang, Z. H., Kravtchinskaia, E., Segal, D., Lukins, P. D., Swift, P. D., Martin, P. J., Amaratunga, G. A. J., Gaskell, P. H., and Saeed, A., Diamond Relat. Mater. 1, 51 (1991).Google Scholar
2. Cuomo, J. J., Pappas, D. L., Bruley, J., Doyle, J. P., and Saenger, K. L., J. Appl. Phys. 70, 1706 (1991).Google Scholar
3. Schwan, J., Ulrich, S., Roth, H., Ehrhardt, E., Silva, S. R. P., Robertson, J., Samlenski, R., and Brenn, R., J. Appl. Phys. 79, 1416 (1996).Google Scholar
4. McKenzie, D. R., Yin, Y., Marks, N. A., Davis, C. A., Kravtchinskaia, E., Pailthorpe, B. A., and Amaratunga, G. A. J., J. Non-Cryst. Solids 164-166, 1101 (1993).Google Scholar
5. Davis, C. A., Yin, Y., McKenzie, D. R., Hall, L. E., Kravtchinskaia, E., Keast, V., Amaratunga, G. A. J.,, and Veerasamy, V. S., J. Non-Cryst. Solids 170, 46 (1994).Google Scholar
6. Amaratunga, G. A. J., Veerasamy, V. S., Milne, W. I., Davis, C. A., Silva, S. R. P., and MacKenzie, H. S., Appl. Phys. Lett. 63, 370 (1993).Google Scholar
7. Robertson, J., Philos. Mag. B 76, 335 (1997).Google Scholar
8. Gerstner, E. G. and McKenzie, D. R., Diamond Relat. Mater. (1998), submitted.Google Scholar
9. Gerstner, E. G. and McKenzie, D. R., Phys. Rev. Lett. (1998), submitted.Google Scholar
10. Hill, R. M., Philos. Mag. 23, 59 (1971).Google Scholar