Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T06:57:06.084Z Has data issue: false hasContentIssue false

Nontoxic Silicon Nanocrystals and Nanodiamonds as Substitution for Harmful Quantum Dots

Published online by Cambridge University Press:  31 January 2011

Anna Fucikova
Affiliation:
[email protected]@mff.cuni.cz, Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Prague 2, Czech Republic
Jan Valenta
Affiliation:
[email protected], Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Prague, Prague 2, Czech Republic
Ivan Pelant
Affiliation:
[email protected], Institute of Physics of Academy of Sciences of the Czech Republic, Centre for Nanotechnologies and Materials for Nanoelectronics, Prague, Prague 6, Czech Republic
Vitezslav Brezina
Affiliation:
[email protected], University of South Bohemia, Institute of Physical Biology, Nove Hrady, Nove Hrady, Czech Republic
Get access

Abstract

The commercially available semiconductor quantum dots have been proven to be slightly to significantly toxic by recent publications depending on the chemical composition. We are developing new non-toxic fluorescent labels based on (i) nanocrystalline silicon, suitable for in vivo studies due to their biodegrability, and on (ii) nanodiamonds, intended mainly for in vitro use due to their long-term stability and nondegradilibity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kirchner, C. Riedl, T. Kudera, S. Pellegrino, T. Javier, A. M. Gaub, H. E. Stolzle, S. Fertig, N. Parak, W. J. Nano Letters, 5, (2005), 331338 Google Scholar
2 Canham, L. T. Low, S. P. Voelcekr, N. H. Williams, K. A. Biomaterials 27, (2006) 45384546 Google Scholar
3 Khriachtchev, L. (ed.), Silicon Nanophotonics. Basic Principles, Present Status and Perspectives. World Scientific Publishing, Singapore 2009.Google Scholar
4 Yu, SJ., Kang, M.W., Chang, H.CH., Chen, K.M., Yu, Y.CH., J. Am. Chem. Soc. 127, (2005) 1760417605 Google Scholar
5 Osawa, E., Eidelman, E. D. Siklitsky, V. I. Sharonova, M. A. Yagovkina, A., Vul, A. Ya, Takahashi, M., Inakuma, M., Ozawa, M., Diamond and Related Materials 14, (2005) 17651769.Google Scholar
6 Valenta, J., Fucikova, A., Pelant, I., Kùsová, K., Dohnalová, K., Aleknaviéius, A., Cibulka, O., Fojtík, A., Kada, G., New J. Phys 10, (2008) 073022.Google Scholar
7 Dohnalová, K., Pelant, I., Kùsová, K., Gilliot, P., Gallart, M., Crégut, O., Rehspringer, J.L., Hönerlage, B., Ostatnický, T., Bakardjeva, S., New Journal of Physics 10, (2008), 063014.Google Scholar
8 Fucikova, A. Valenta, A. J., Pelant, I., Brezina, V., Chemical papers, 63 (2009) ,704708. AA9 L. Mangolini, E. Thimsen, U. Kortshagen Nano Letters 5 (4),(2005), 655–659.Google Scholar