Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T04:48:55.659Z Has data issue: false hasContentIssue false

Nonmelt Laser Annealing of 1 Kev Boron Implanted Silicon

Published online by Cambridge University Press:  21 March 2011

Susan Earles
Affiliation:
SWAMP Center, University of Florida, Gainesville, USA
Mark Law
Affiliation:
SWAMP Center, University of Florida, Gainesville, USA
Kevin Jones
Affiliation:
SWAMP Center, University of Florida, Gainesville, USA
Somit Talwar
Affiliation:
Verdant, San Jose, CA, USA
Sean Corcoran
Affiliation:
Intel Corp, Portland OR, USA
Get access

Abstract

Heavily-doped, ultra-shallow junctions in boron implanted silicon using pulsed laser annealing have been created. Laser energy in the nonmelt regime has been supplied to the silicon surface at a ramp rategreater than 1010°C/sec. This rapid ramp rate will help decrease dopant diffusion while supplying enough energy to the surface to produce dopant activation. High-dose, non-amorphizing 1 keV, 1e15 ions/cm2 boron is used. Four-point probe measurements (FPP) show a drop in sheet resistance withnonmelt laser annealing (NLA) alone. Transmission electron microscopy (TEM) shows the NLA dramatically affects the defect nucleation resulting in fewer defects with post annealing. Hall mobility and secondary ion mass spectroscopy (SIMS) results are also shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.SI Association 1997.Google Scholar
2. Cowern, N, Janssen, T, Jos, H, J. Appl. Phys. 68, 6191 (1990).Google Scholar
3. Hofker, W, Werner, H, Oosthoek, D, Koeman, N, Appl. Phys. 4, 125 (1974).Google Scholar
4. Solmi, S, Landi, E, Baruffaldi, F, J. Appl. Phys. 68, 3250 (1990).Google Scholar
5. Tsukamoto, H, Sol. St. Electron. 43, 487 (1999).Google Scholar
6. Zhang, LH, Jones, KS, Chi, P, Simons, DS, Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
7. Chong, Y, Pey, K, Lu, Y, Wee, A, Osipowicz, T, Seng, H, See, A, Dai, J, Appl. Phys. Lett. 7, 2994 (2000).Google Scholar
8. Privitera, V, Spinella, C, Fortunato, G, Mariucci, L, Appl. Phys. Lett. 77, 552 (2000).Google Scholar
9. Agarwal, A, Materials Research Society Spring 2000.Google Scholar
10. Agarwal, A, H-J, Gossmann, Fiory, A, J. Electron. Mater. 28, 1333 (1999).Google Scholar
11. Downey, D, Falk, S, Bertuch, A, Marcus, S, J. Electron. Mater. 28, 1340 (1999).Google Scholar
12. Cowern, N, Huizing, H, Stolk, P, Visser, C, de Kruif, R, Kyllesbech Larsen, K, Privitera, B, Nanver, L, Crans, W, Nucl. Instrum. Methods Phys. Res. B, 120, 14 (1996).Google Scholar
13. Eaglesham, DJ, Stolk, PA, H-J, Gossmann, Poate, JM, Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
14. Earles, SK, Law, ME, Brindos, RE, Jones, KS, Materials Research Society Spring 2000.Google Scholar