Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T02:51:06.470Z Has data issue: false hasContentIssue false

Nonmagnetic Doping Effect on the Magneto-Transport Properties of Mn Doped ZnO Dilute Magnetic Semiconductors

Published online by Cambridge University Press:  01 February 2011

Govind Mundada
Affiliation:
[email protected], Missouri State University, Physics,Astronomy & Materials Science, 833 E Elm,#1802, Springfield, Missouri, 65806, United States, 417-837-7092,417-619-2838
Srikanth Manchiraju
Affiliation:
[email protected], Missouri State University, Physics,Astronomy & Materials Science, United States
Ted Kehl
Affiliation:
[email protected], Missouri State University, Physics,Astronomy & Materials Science, United States
Sandhya Pulugam
Affiliation:
[email protected], Missouri State University, Physics,Astronomy & Materials Science, United States
Rishi J. Patel
Affiliation:
[email protected], Missouri State University, Center for Applied Science and Engineering
Pawan Kahol
Affiliation:
[email protected], Missouri State University, Physics,Astronomy & Materials Science, United States
Kartik Ghosh
Affiliation:
[email protected], Missouri State University, Physics,Astronomy & Materials Science
Get access

Abstract

In this paper we report non magnetic elements (Al and Cu) doping effect on the structural and magneto-transport properties of Zn0.85Mn0.15O dilute magnetic semiconductors. Thin films of undoped Zn0.85Mn0.15O (ZnMnO), Al doped Zn0.80Al0.05Mn0.15O (ZnMnAlO), and Cu doped Zn0.85Cu0.05Mn0.15O (ZnMnCuO) were grown on sapphire single crystals using pulse laser deposition technique. X-Ray Diffraction and Raman Spectra confirm the epitaxial growth with a strong orientation along the c-axis. Scanning Electron Microscopy and Atomic Force Microscopy reveals surface microstructure of all the films. Magneto transport properties quantify the carrier concentrations and mobilities at room temperature in all the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wolf, S. A., Science 294, 1488 (2001).Google Scholar
2 Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 790 (1999).10.1038/45509Google Scholar
3 Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 10191022 (2000).10.1126/science.287.5455.1019Google Scholar
4 Jung, S. W., An, S. J., Yi, Gyu-Chul, Jung, C. U., Lee, Sung-Ik, and Cho, Sunglae, Appl. Phys. Lett. 80, 4561 (2002).10.1063/1.1487927Google Scholar
5 Chiang, Y. M., Birnie, D. P. I., and Kingery, W. D., Physical Ceramics (John Wiley & Sons, Inc), (1997).Google Scholar
6 Barker, A. S. and , JR, Phys. Rev. 132, 1474 (1963).10.1103/PhysRev.132.1474Google Scholar
7 Hwang, E. H. and Das Sarma, S., Phys. Rev. B. 72, 035210 (2005).10.1103/PhysRevB.72.035210Google Scholar