Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:53:58.605Z Has data issue: false hasContentIssue false

Non-lithographic Nanocolumn Fabrication with Application to Field Emitters

Published online by Cambridge University Press:  17 March 2011

M. J. Colgan
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, CANADA, T6G 2G7
D. Vick
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, CANADA, T6G 2G7
M. J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta Edmonton, AB, CANADA, T6G 2G7
Get access

Abstract

A non-lithographic method of fabricating high-density arrays of nanometer-scale vertical columns was investigated. The use of oblique deposition techniques allows the fabrication of isolated vertical columns in a single-step evaporation process without the need for either pre- or post-deposition lithographic processing. Extreme oblique incidence deposition with computer controlled substrate motion was utilized to fabricate columns with diameters near 100 nm and densities exceeding 109 columns/cm2. The desired column geometry may be engineered through choice of deposition angle and substrate spin rate. In one potential application of these microstructures, arrays of vertical columns were fabricated from silicon and carbon and tested for field emission characteristics. Further studies were made on the use of ion milling to modify the tips of the nanocolumns in order to improve the field emission properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhirnov, V. V., Wojak, G. J., Choi, W. B., Cuomo, J. J., and Hren, J. J., J. Vac. Sci. Technol. A. 15, 1733 (1997) and References contained therein.Google Scholar
2. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S., and Kim, J. M., Appl. Phys. Lett. 75, 3129 (1999).Google Scholar
3. Lee, Y.-H., Kim, H., Kim, D.-H., and Ju, B.K., J. Electrochem. Soc. 147, 3564 (2000).Google Scholar
4. Cheah, L. K., Shi, X., Tay, B. K., and Sun, Z., J. Vac. Sci. Technol. B 16, 2049 (1998).Google Scholar
5. Choi, J. O., Huh, J. W., Choi, Y. H., Kim, M. J., Kim, H., Cho, Y. R., and Jeong, H. S., J. Vac. Sci Technol. B 16, 1199 (1998).Google Scholar
6. Govyadinov, A. N. and Zakhvitcevich, S. A., J. Vac. Sci. Technol. B 16, 1222 (1998).Google Scholar
7. Spallas, J. P., Hawryluk, A. M., and Kania, D. R., J. Vac. Sci. Technol. B 13, 1973 (1995).Google Scholar
8. Driskill-Smith, A. A. G., Hasko, D. G., and Ahmed, H., Appl. Phys. Lett. 71, 3159 (1997).Google Scholar
9. Yavas, O., Ochiai, C., Takai, M., Hosono, A., and Okuda, S., Appl. Phys. Lett. 76, 3319 (2000).Google Scholar
10. Baba, A., Hizukuri, M., Iwamoto, M., and Asano, T., J. Vac. Sci Technol. B 18, 877 (2000).Google Scholar
11. Stepanova, A. N., Givargizov, E. I., Bormatova, L. V., Zhirnov, V. V., Mashkova, E. S., and Molchanov, A. V., J. Vac. Sci. Technol. B 16, 678 (1998).Google Scholar
12. Sit, J. C., Vick, D., Robbie, K., and Brett, M. J., J. of Mater. Res. 14, 1197 (1999).Google Scholar
13. Vick, D., Tsui, Y. Y., Brett, M. J., and Fedosejevs, R., Thin Solid Films 350, 49 (1999).Google Scholar
14. Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 1460 (1997).Google Scholar
15. Robbie, K. and Brett, M. J., U.S. Pat. 5,866,204.Google Scholar
16. Robbie, K., Sit, J. C., and Brett, M. J., J. Vac. Sci. Technol. B 16, 1115 (1998).Google Scholar
17. Messier, R., Gehrke, T., Frankel, C., Venugopal, V. C., Otano, W., and Lakhtakia, A., J. Vac. Sci. Technol. A 15, 2148 (1997).Google Scholar
18. Robbie, K., Brett, M. J., and Lakhtakia, A., Nature 384, 616 (1996).Google Scholar
19. Lakhtakia, A., Messier, R., Brett, M. J., and Robbie, K., Innovat. Mater. Res. 1, 165 (1996).Google Scholar
20. Robbie, K., Friedrich, L. J., Dew, S. K., Smy, T., Brett, M. J., J. Vac. Sci. Technol. A 13, 1032 (1995).Google Scholar
21. Robbie, K. and Brett, M. J., J. Vac. Sci. Technol. A 15, 1460 (1997).Google Scholar