Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T04:22:06.368Z Has data issue: false hasContentIssue false

Nonlinear Optical Properties of Cds-SiO2 Glass Composite Thin Films Prepared by RF-Sputtering

Published online by Cambridge University Press:  15 February 2011

I. Tanahashi
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd.
M. Yoshida
Affiliation:
Department of Applied Physics, Faculty of Engineering, Nagoya University
Y. Manabe
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd.
T. Mitsuyu
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd.
T. Tokizaki
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd.
A. Nakamura
Affiliation:
Department of Applied Physics, Faculty of Engineering, Nagoya University
Get access

Abstract

CdS-microcrystallites-embedded films of SiO2 were successfully prepared by rf-sputtering. The optical absorption edge of the film with 18.5 at% CdS clearly exhibited a blue shift by 0.13 eV compared to bulk CdS, indicating the quantum size effect due to confinement of electrons and holes in CdS microcrystallites. The blue-shift decreased with increasing the CdS concentration. The photoluminescence spectra of the films also exhibited the blue shift in band-edge emission. From decay curves of the band-edge emission, the dominant decay time was estimated to be 100 ps, and longer components were weak. Optical nonlinear susceptibility of the films was measured by degenerated four-wave mixing experiments near band-edge. The third-order nonlinear susceptibility was estimated to be 5.0 × 10−7 esu at 77K for the film with 46.3 at% of CdS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jain, R.K. and Lind, R.C., J.Opt.Soc.Am. 73, 647 (1983).10.1364/JOSA.73.000647CrossRefGoogle Scholar
2. Warnock, J. and Awschalom, D.D., Phys Rev.B 32 529 (1985).Google Scholar
3. Borrelli, N.F., Hall, D.W., Holland, H.J. and Smith, D.W., J.Appl.Phys. 61 5399 (1987).Google Scholar
4. Yumoto, J., Fukushima, S. and Kubodera, K., Opt.Lett. 12 832 (1987).10.1364/OL.12.000832Google Scholar
5. Shinojima, H., Yumoto, J., and Uesugi, N., Appl. Phys. Lett. 55 1519 (1989).10.1063/1.102251Google Scholar
6. Ekimov, A.I., Efros, Al. I. and Onushchenko, A.A., Solid State Commun. 56 921 (1985).10.1016/S0038-1098(85)80025-9Google Scholar
7. Nogami, M., Nagasaka, K., and Kato, E., J.Am.Ceram.Soc. 73 2097 (1990).10.1111/j.1151-2916.1990.tb05275.xGoogle Scholar
8. Nogami, M., Nagasaka, K., and Kotani, K., J.Non-Cryst.Solids 126 87 (1990).10.1016/0022-3093(90)91026-NCrossRefGoogle Scholar
9. Touge, N., Asuka, M., and minami, T., Chem.Expree, 5 521 (1990).Google Scholar
10. Kuczynski, J. and Thomas, J.K., J.Phys.Chem. 89 2720 (1985).10.1021/j100259a002CrossRefGoogle Scholar
11. Nasu, H., Tsunetomo, K., Tokumitsu, Y. and Osaka, Y., Jpn. J. Appl. Phys. 28 L862 (1989).10.1143/JJAP.28.L862Google Scholar
12. Potter, B.G. Jr. and Simmons, J.H., J.Appl.Phys. 68 1281 (1990).10.1063/1.346720Google Scholar
13. Iqbal, Z., Veprek, S., Webb, A.P. and Capezzuto, P., Solid State Commun. 37 93 (1981).Google Scholar
14. Taylor, J.A., Appl.Surf.Sci. 7 168 (1981).10.1016/0378-5963(81)90068-4CrossRefGoogle Scholar
15. Gaarenstroom, S.W. and Winograd, N., J.Chem.Phys. 67 3500 (1977).Google Scholar