Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T11:48:42.006Z Has data issue: false hasContentIssue false

Non-equilibrium Technology of Obtaining Nanoamorphous Metals

Published online by Cambridge University Press:  01 February 2011

Malkhasyan R.T.*
Affiliation:
Scientific Production Enterprise “ATOM” Tevosyan 3/1. Yerevan 375076 Republic of Armenia, e-mail: [email protected]
Get access

Abstract

A new non-equilibrium technology of obtaining structureless amorphous nanosize metals (not alloys) is presented in the given paper. The new content of definition of amorphous metals is discussed with an example of synthesized nanosize amorphous metals: W* and Mo*, with the grain size of less than 5 nm.

A comparison of some properties of these metals with those of nanosize but crystalline ones (Wcr and Mocr) are presented. It is shown that they are much more reactive than the crystalline metals of analogous size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klement, K., Willens, R.H. and Duwez, P. Rapid quenched amorphous metals prepare. Vol. 187, p 869, 1960.Google Scholar
2. Luborsky, F.E.Amorphous Metallic Alloys” edited by Luborsky, F.E.. Butterwords and Co USA, Pp. 4450. (1983)Google Scholar
3. Sudzuki, K., Fudzimory, Kh., Khasimoto, K.Amorphous metals” pp. 3757 Metalurgia, Moskow. (1987)Google Scholar
4. Kovneristi, Ju.K., Osipov, E.K., E.A., Trofimova Physics- chemical basis of preparing amorphous metallic alloys. M. Nauka p. 145. (1983).Google Scholar
5. Wolf, D. Philphot, S.R., Keblinski Proceedings of MRS FALL MEETING Vol. 400. (1996).Google Scholar
6. Malkhasyan, R.T., Agababyan, E.V., Karakhanyan, R.K. Chem. Phys. Report, Vol 15 No 10, pp. 14091417, (1996).Google Scholar
7. Malkhasyan, R.T. Proceeding MRS FALL MEETING Vol 400, pp7782, (1996)Google Scholar
8. Malkhasyan, R.T., Grigoryan, S. Ceramic Transactions Vol 94, pp 455462.(1999)Google Scholar
9. Malkhasyan, R.T., Movsesyan, G., Valasanyan, T., Khachikyan, G., Kostanyan, S., Sarkisyan, G. Patent USSR N 4906334/109161, 11.11.1990.Google Scholar
10. Malkhasyan, R.T. Method of Amorphous Materials Obtainment. Patent PCT/AM 01/00010, 04, 09, 2001.Google Scholar
11. Malkhasyan, R. T., Movsesyan, G., Potapov, V. Jour. High Energy Chemistry Vol. 26, N.1, p63, USSR, (1992)Google Scholar
12. Malkhasyan, R.T. Garibyan, T. Patent PCT/AM 01/00009. 26.02.2002.Google Scholar
13. Malkhasyan, R.T. Krmoyan, R., Kosyan, V. Proceeding of MRS FALL MEETING Vol. 734. pp 168173, (2002),Google Scholar
14. Malkhasyan, R.T., Pogosian, A., Makaryan, V., Isajanyan, A. Proceedings of MRS FALL MEETING (2003) to be published.Google Scholar
15. Zhu, X., Birringer, R., Herr, U. and Gleiter, H., Phys Rev. B 35, p9085, (1987).Google Scholar
16. Gleiter, H. Prog. Mater. Sci. 33. 223 (1989).Google Scholar
17. Chernov, A., Givargizov, E., Bagdasarov, Kh., Demjanec, L., Kuznecov, V., Lobachev, A., Contemporaneous crystallography Vol 3, p. 51 1980.Google Scholar
18. Nanophase Materials, Sinthesis – Properties – Applications. Edited by Hajipanajis, K. and Siegel, R. Kluwer Acad. Publ. p. 808, 1994 Google Scholar