Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T12:24:43.238Z Has data issue: false hasContentIssue false

Nondiffusive Brownian Motion Studied by Diffusing-Wave Spectroscopy

Published online by Cambridge University Press:  21 February 2011

D. J. Pine
Affiliation:
Department of Phlysics, Haverford College, Haverford, PA 19041 Exxon Research and Engineering Co., Rt. 22 E, Annandale, NJ 08801
D. A. Weitz
Affiliation:
Exxon Research and Engineering Co., Rt. 22 E, Annandale, NJ 08801
D. J. Durian
Affiliation:
Exxon Research and Engineering Co., Rt. 22 E, Annandale, NJ 08801
P. N. Pusey
Affiliation:
Royal Signals and Radar Establishment, Malvern, Worchestershire WR14 SPS, UK
R. J. A. Tough
Affiliation:
Royal Signals and Radar Establishment, Malvern, Worchestershire WR14 SPS, UK
Get access

Abstract

On a short time scale, Brownian particles undergo a transition from initially ballistic trajectories to diffusive motion. Hydrodynamic interactions with the surrounding fluid lead to a complex time dependence of this transition. We directly probe this transition for colloidal particles by measuring the autocorrelation function of multiply scattered light and observe the effects of the slow power-law decay of the velocity autocorrelation function.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hinch, E.J., J. Fluid Mech. 72, 499 (1975).Google Scholar
2 Alder, B.J. and Wainwright, T.E., Phys. Rev. Lett. 18, 988 (1967); Phys. Rev. Al, 18 (1970).Google Scholar
3 Maret, G. and Wolf, P.E., Z. Phys. B 65, 409 (1987).Google Scholar
4 Stephen, M.J., Phys. Rev. B 37, 1 (1988).Google Scholar
5 Pine, D.J., Weitz, D.A., Chaikin, P.M., and Herbolzheimer, E., Phys. Rev. Lett. 60, 1134 (1988).Google Scholar
6 Pine, D.J., Weitz, D.A., Maret, G., Wolf, P.E., Herbolzheimer, E. and Chaikin, P.M., in Scattering and Localization of Classical Waves in Random Media, ed. Sheng, P. (World Scientific, 1989).Google Scholar
7 See Berne, B.J. and Pecora, R., Dynamic Light Scattering (Wiley, New York, 1976).Google Scholar
8 Boullier, A., Boon, J.-P. and Deguent, P., J. Phys. (Paris) 39, 159 (1978); G.L. Paul and P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981); K. Ohbayashi, T. Kohno, and H. Utiyama, Phys. Rev A27, 2636 (1983).Google Scholar
9 Burstyn, H.C. and Sengers, J.V, Phys. Rev. A 27, 1071 (1983); B. Hinz, G. Simonsohn, M. Hendrix, G. Wu and A. Leipertz, J. Modern Opt. 34, 1093 (1987).Google Scholar
10 Ishimaru, A., Wave Propagation and Scattering in Random Media, vol.I (Academic, New York) 1978.Google Scholar
11 Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd Ed. (Clarendon, Oxford) 1959.Google Scholar
12 MacKintosh, F.C. and John, S., Phys. Rev. B 40, 2383 (1989).Google Scholar
13 Van Saarloos, W. and Mazur, P., Physica 120 A, 77 (1983).Google Scholar
14 Batchelor, G.K., J. Fluid Mech. 74, 1 (1976).Google Scholar