Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T17:58:41.271Z Has data issue: false hasContentIssue false

Nonaqueous Synthesis of Barium Titanate Nanocrystals in Acetophenone as Oxygen Supplying Agent

Published online by Cambridge University Press:  15 February 2011

Markus Niederberger
Affiliation:
Max-Planck-Institute of Colloids and Interfaces Colloid Chemistry Research Campus Golm 14424 Potsdam, Germany
Georg Garnweitner
Affiliation:
Max-Planck-Institute of Colloids and Interfaces Colloid Chemistry Research Campus Golm 14424 Potsdam, Germany
Get access

Abstract

Solvothermal reaction of a mixture of metallic barium and titanium isopropoxide in acetophenone leads to the formation of barium titanate nanocrystals. XRD measurements prove the presence of cubic BaTiO3 with traces of BaCO3 as side product. According to TEM investigations, the particles exhibit a nearly spherical particle shape with diameters ranging from 10 to 15 nm. However, due to the lack of any stabilizers, the particles are slightly agglomerated. NMR analysis of the obtained reaction solution shows that aldol condensation reactions of acetophenone and in situ formed acetone provide the water necessary for inducing crystallization and nanoparticle formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gerrard, W., and Woodhead, A. H., J. Chem. Soc. 519 (1951).Google Scholar
2. Schwarz, R., and Kuchen, W., Chem. Ber. 89, 169 (1956).Google Scholar
3. Corriu, R. J. P., Leclercq, D., Lefevre, P., Mutin, P. H., and Vioux, A., J. Non-Cryst. Solids 146, 301 (1992).Google Scholar
4. Corriu, R. J. P., Leclercq, D., Lefevre, P., Mutin, P. H., and Vioux, A., J. Mater. Chem. 2, 673 (1992).Google Scholar
5. Trentler, T. J., Denler, T. E., Bertone, J. F., Agrawal, A., and Colvin, V. L., J. Am. Chem. Soc. 121, 1613 (1999).Google Scholar
6. Tang, J., Fabbri, J., Robinson, R. D., Zhu, Y. M., Herman, I. P., Steigerwald, M. L., and Brus, L. E., Chem. Mater. 16, 1336 (2004).Google Scholar
7. Joo, J., Yu, T., Kim, Y. W., Park, H. M., Wu, F. X., Zhang, J. Z., and Hyeon, T., J. Am. Chem. Soc. 125, 6553 (2003).Google Scholar
8. Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G., J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
9. Pinna, N., Antonietti, M., and Niederberger, M., Colloids Surf., A 250, 211 (2004).Google Scholar
10. Pinna, N., Garnweitner, G., Antonietti, M., and Niederberger, M., Adv. Mater. 16, 2196 (2004).Google Scholar
11. Pinna, N., Neri, G., Antonietti, M., and Niederberger, M., Angew. Chem. Int. Ed. 43, 4345 (2004).Google Scholar
12. Niederberger, M., Pinna, N., Polleux, J., and Antonietti, M., Angew. Chem. Int. Ed. 43, 2270 (2004).Google Scholar
13. Niederberger, M., Garnweitner, G., Pinna, N., and Antonietti, M., J. Am. Chem. Soc. 126, 9120 (2004).Google Scholar
14. Garnweitner, G., Antonietti, M., and Niederberger, M., Chem. Commun. 397 (2005).Google Scholar
15. Goel, S. C., Chiang, M. Y., Gibbons, P. C. and Buhro, W. E., Mat. Res. Soc. Symp. Proc. 271, 3 (1992)Google Scholar
16. Gaskins, B. C. and Lannutti, J. J., J. Mater. Res. 11, 1953 (1996)Google Scholar
17. Asiaie, R., Zhu, W., Akbar, S. A. and Dutta, P. K., Chem. Mater. 8, 226 (1996)Google Scholar