Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T07:46:52.705Z Has data issue: false hasContentIssue false

Non Universal Scaling Law Exponents in the AC Dielectric Response of Polymer-Carbon Black Composites

Published online by Cambridge University Press:  03 September 2012

P. Hakizabera
Affiliation:
Physique des Solides, Université Libre de Bruxelles CP233, B 1050, Belgium
R. Deltour
Affiliation:
Physique des Solides, Université Libre de Bruxelles CP233, B 1050, Belgium
F. Brouers
Affiliation:
Etude Physique des Matériaux, Université de Liège B5, B4000, Belgium
Get access

Abstract

We report experimental and theoretical results concerning the ac properties of polymer-carbon black (CB) composites. For these materials, the theory of percolation has to be generalised to account for the complex structure of the CB and the observation that tunnelling plays an important role close to the percolation threshold. We have extended a model of Balberg [1] relating the non-universality of the exponent t to the CB morphology, to interpret the non universality of the dynamic scaling exponents t/(s+t) and s/(s+t) in the critical ac regime observed in these composites

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Balberg, I., Phys.Rev. Lett. 59, 1305 (1987)Google Scholar
2) Kawamoto, H. in Carbon Black-Polymer Composites, edited by Sichel, E.K. (Dekker, New-York 1982)Google Scholar
3) Carmona, F., Barreau, F., Delhaes, P., and Canet, R. J.Phys.Lett., 41, L534 (1980)Google Scholar
4) Balberg, I. and Bozowski, S., Solid State Commun.,44, 551 (1982)Google Scholar
5)Chung, K.T., Sabo, A., and Pica, A.P., J.Appl.Phys. 53, 6867 (1982)Google Scholar
6)Stauffer, D. and Aharony, A., Introduction to Percolation Theory (Taylor and Francis, Philadelphia, 1991) and references hereinGoogle Scholar
7) Clerc, J.P., Giraud, G. and Luck, J.M., Adv. Phys. 39, 191 (1990) and references hereinGoogle Scholar
8) Abeles, B., Sheng, P., Coutts, M.D., and Arie, Y., Adv.Phys. 24, 407 (1975)Google Scholar
9) Sichel, E.K. and Gittelman, J.I., J.Electron. Mater. 11, 699 (1982)Google Scholar
10) Sheng, P. and Klafter, J. Phys.Rev. B27, 2583 (1983)Google Scholar
13) Hakizabera, P. Thèse de Doctorat, Université Libre de Bruxelles 1993.Google Scholar
12) Feng, S., Halperin, B.I. and,Sen, P.N. Phys.Rev. B35 197 (1987)Google Scholar
13) Sen, P.N., Roberts, J.N. and Halperin, B.I. Phys.Rev. B32, 3306 (1985)Google Scholar
14) Kogut, P.M. and Straley, J.P., J.Phys.C:Solid St.Phys. 12 2151(1979)Google Scholar
14) Sarychev, A. and Brouers, F., Phys.Rev.Lett. 73,2895 (1994).Google Scholar