Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T04:22:03.517Z Has data issue: false hasContentIssue false

Non radiative recombination centers in ZnO nanorods

Published online by Cambridge University Press:  22 April 2013

D. Montenegro
Affiliation:
Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
V. Hortelano
Affiliation:
GdS-Optronlab, Departamento Física Materia Condensada, Edificio I+D, Universidad de Valladolid, Paseo de Belén 1, 47011, Valladolid, Spain
O. Martínez
Affiliation:
GdS-Optronlab, Departamento Física Materia Condensada, Edificio I+D, Universidad de Valladolid, Paseo de Belén 1, 47011, Valladolid, Spain
M. C. Martínez-Tomas
Affiliation:
Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
V. Sallet
Affiliation:
Groupe d'Etude de la Matière Condensée (GEMAC), CNRS-Université de Versailles St-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
V. Muñoz
Affiliation:
Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
J. Jiménez
Affiliation:
GdS-Optronlab, Departamento Física Materia Condensada, Edificio I+D, Universidad de Valladolid, Paseo de Belén 1, 47011, Valladolid, Spain
Get access

Abstract

Nowadays, the nature of the non radiative recombination centres in ZnO is a matter of controversy; they have been related to extended defects, zinc vacancy complexes, and surface defects, among other possible candidates. We present herein the optical characterization of catalyst free ZnO nanorods grown by atmospheric MOCVD by microRaman and cathodoluminescence spectroscopies. The correlation between the defect related Raman modes and the cathodoluminescence emission along the nanorods permits to establish a relation between the non radiative recombination centers and the defects responsible for the local Raman modes, which have been related to Zn interstitial complexes.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Willander, M., et al. ., Nanotechnology 20, 332001 (2009).CrossRefGoogle Scholar
Djurišić, A.B., Ng, A.M.C., and Chen, X.Y., Prog. Quant. Electron. 34, 191 (2010).CrossRefGoogle Scholar
Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A., and Gnade, B.E., J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
Djurišić, A.B. and Leung, Y.H., Small 2, 944 (2006).CrossRefGoogle Scholar
Chichibu, S.F., Onuma, T., Kubota, M., Uedono, A., Sota, T., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., J. Appl. Phys. 99, 093505 (2006).CrossRefGoogle Scholar
Wen, X., Davis, J.A., Van Dao, L., Hannaford, P., Coleman, V.A., Tan, H.H., Jagadish, C., Koike, K., Sasa, S., Inoue, M., and Yano, M., Appl. Phys. Lett. 90, 221914 (2007).CrossRefGoogle Scholar
Montenegro, D.N., Souissi, A., Martínez-Tomás, M.C., Muñoz-Sanjosé, V., and Sallet, V., J. Cryst. Growth 359, 122 (2012).CrossRefGoogle Scholar
Cuscó, R., Alarcón-Lladó, E., Ibáñez, J., Artús, L., Jiménez, J., Wang, B., and Callahan, M.J., Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
Friedrich, F. and Nickel, N.H., Appl. Phys. Lett. 91, 111903 (2003).CrossRefGoogle Scholar
Kaschner, A., Haboeck, U., Strassburg, M., Kaczmarczyk, G., Hoffmann, A., and Thomsen, C., Appl. Phys. Lett. 80, 1909 (2002).CrossRefGoogle Scholar
Gomi, M., Oohira, N., Ozaki, K., and Koyano, M., Jpn. J. Appl. Phys. 42, 481 (2003).CrossRefGoogle Scholar
Monteiro, T., Boemare, C., and Soares, M.J., J. Appl. Phys. 93, 8995 (2003).CrossRefGoogle Scholar
Mei, Y.F., Siu, G.G., Fu, R.K.Y., Wong, K.W., Chu, P.K., Lai, C.W., and Ong, H.C., Nuclear Instruments and Methods in Phys. Research B 237, 307 (2005).CrossRefGoogle Scholar
Bundesmann, C., Ashkenov, N., Schubert, M., Spemann, D., Butz, T., Kaidashev, E.M., Lorenz, M., and Grundmann, M., Appl. Phys. Lett. 83, 1974 (2003).CrossRefGoogle Scholar
Friedrich, F., Gluba, M.A., and Nickel, N.H., Appl. Phys Lett. 95, 141903 (2009).CrossRefGoogle Scholar