Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T02:55:47.975Z Has data issue: false hasContentIssue false

NO Reduction by CO Catalyzed with Au/TiO2 in Oxygen-rich Condition

Published online by Cambridge University Press:  01 February 2011

J. A. Wang
Affiliation:
ESIQIE, Instituto Politécnico Nacional, Col. Zacatenco, C. P. 07738, México D.F., Mexico
J. A. Toledo
Affiliation:
Programa de Ingenería Moleciular, Instituto Mexicano del Petróleo. Eje Lázaro Cárdenas 152, C. P. 07730, México D. F., Mexico
C. Angeles
Affiliation:
Programa de Ingenería Moleciular, Instituto Mexicano del Petróleo. Eje Lázaro Cárdenas 152, C. P. 07730, México D. F., Mexico
M. Moran-Pineda
Affiliation:
Programa de Ingenería Moleciular, Instituto Mexicano del Petróleo. Eje Lázaro Cárdenas 152, C. P. 07730, México D. F., Mexico
A. García-Ruiz
Affiliation:
UPIICSA, Instituto Politécnico Nacional, Te 950, Col. Granjas-México, Iztacalco, 08400, México, D. F. Mexico
Get access

Abstract

Gold nanoparticles supported on titania catalysts with different Au loadings were prepared and evaluated in the reaction of NO reduction by CO in an oxygen rich condition. The crystalline structures of the Au/TiO2 materials were refined with Rietveld method. TiO2 support chiefly contains anatase phase, having a crystalline size ranged from 5 to 15 nm. Au particles have an average crystal size approximately 2-5 nm as Au concentration less 3 wt %. In the reaction of NO + CO + O2, the Au/TiO2catalysts show a selectivity to 100 % N2, neither NO2 nor N2O was yielded in the reaction temperature between 25 and 400 °C, which strongly indicates that Au/TiO2catalysts are much superior to the other catalysts like Pt/TiO2 catalysts on which N2O was usually produced in the reaction temperature below 200 °C and NO2 was produced in the reaction temperature above 300 °C under a similar reaction condition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Bond, G.C., Louis, C., Thompson, D.T., Catalysis by Gold, Imperial Press, London, 2007.Google Scholar
[2]. Min, B.K., Friend, C.M., Chem. Rev. 107 (2007) 2709.Google Scholar
[3]. Patra, C. R., Ghosh, A., Mukerjee, P., Sastry, M., Kumar, R., in Nanoporous Materials III, Sayari, A., Jaronirc, M. (editor) Stud. Surf. Sci. Catal. 141 (2002) 641).Google Scholar
[4]. Chi, Y. S., Lin, H. P., Lin, C. N., Mou, C. Y., Wan, B. Z., in Nanoporous Materials III, Sayari, A., Jaronirc, M. (editor) Stud. Surf. Sci. Catal. 141 (2002) 329.Google Scholar
[5]. Esumi, K., Hosoya, T., Suzuki, A., Torigoe, K., Langmuir, 16 (2000) 2978.Google Scholar
[6]. Kim, J. R., Myeong, W. J., Ihm, S. K., J. Catal. 263 (2009) 123.Google Scholar
[7]. Liu, W., Flyzani-Stephanopoulos, M., J. Catal. 153 (1995) 304.Google Scholar
[8]. Liu, W., Flyzani-Stephanopoulos, M., J. Catal. 153 (1995) 317.Google Scholar
[9]. Tabakova, T., Idakiev, V., Andreeva, D., I. Mitov. Appl. Catal. A. General 202 (2000) 91.Google Scholar
[10]. Sakurai, H., Ueda, A., Kobayashi, T., Haruta, M., Chem. Commun. (1997) 271.Google Scholar
[11]. Rodríguez-Carbajal, J., Laboratoire Leon Brillouin (CEA-CNRS), (France Tel: (33) 1 6908 3343, Fax: (33) 1 6908 8261, E-mail: [email protected]).Google Scholar
[12]. Thompson, P., Cox, D.E., Hasting, J.B.. J. Appl. Crystallogr. 20 (1987) 79.Google Scholar
[13]. Young, R.A., Desai, P.. Arch. Nauki Mater. 10 (1989) 71.Google Scholar
[14]. Prince, A. E.. J. Appl. Crystallogr. 14 (1981) 157.Google Scholar
[15]. Wang, J. A., Salmones, J., Cuan, A., Nava, N., Castillo, S., Moran-Pieda, M., Rojas, F., Applied Surface Science, 230 (2004) 94.Google Scholar
[16].Schwartz, S. B., Fisher, G. B., Schmidt, L. D., J. Phys. Chem. 92 (1988) 389.Google Scholar
[17]. Kleim, R. L., Schwartz, S., Schmidt, L. D., J. Phys. Chem. 89 (1985) 4908.Google Scholar
[18]. Shelef, M., Graham, G. W., Catal. Ver.-Sci. Eng. 36 (1994) 433.Google Scholar
[19]. Martínez-Arias, A., Fernández-Garcia, M., Iglesis-Juez, A., Hungría, A. B., Anderson, J. A., Conesa, J. C., Soroa, J., Appl. Catal. B: Environ. 31 (2001) 51.Google Scholar