Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:46:36.900Z Has data issue: false hasContentIssue false

NMR Studies of Fluid Diffusion in Confining Geometries

Published online by Cambridge University Press:  15 February 2011

Michael Jerosch-Herold
Affiliation:
Exxon Corporate Research,Annandale, NJ 08829.
Hans Thomann
Affiliation:
Exxon Corporate Research,Annandale, NJ 08829.
A. H. Thompson
Affiliation:
Exxon Production Research Company, Houston,TX 77252.
Get access

Abstract

Diffusion dynamics for fluids in sandstone rocks were studied by CPMG and pulsed field gradient (PFG) NMR measurements. Stretched exponential decays of the transverse magnetization were observed while varying the interpulse spacing, τ, in the CPMG experiment which sets the time for diffusion. A crossover from free to restricted diffusion is evident in the dependence of both T2 and the stretch exponent, β2, on the diffusion time τ. The T2(τ) data is fit to a model which interpolates between free and restricted diffusion and has only one free adjustable length scale despite the fact that the sandstone rocks are characterized by a pore size distribution. This NMR derived length scale correlates with a characteristic length derived from Hg injection experiments at the percolation threshold. We compare these results from the CPMG experiment with stimulated echo PFG-NMR diffusion measurements. This provides a complementary method of probing the diffusion dynamics since the longitudinal magnetization is insensitive to the dephasing effects of diffusion in internal field gradients.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Banavar, J. R. and Schwartz, L. M. in Molecular Dynamics in Restricted Geometries, edited by Klafter, J. and Drake, J. M., J. Wiley & Sons, 1989 Google Scholar
2 Brownstein, K. R. and Tarr, C. E., Phys. Rev. A, 19, 2446 (1987)Google Scholar
3 Glasel, J. A. and Lee, K. H., J. Am. Chem. Soc., 96,970 (1974)Google Scholar
4 Thompson, A. H., Sinton, S. W., Huff, S. L., Katz, A. J., Raschke, R. A. and Gist, G. A., J. Appl. Phys., 65, 3259 (1989)Google Scholar
5 Jerosch-Herold, M., Thomann, Hans and Thompson, A.H., manuscript submitted to Phys. Rev. Lett.Google Scholar
6 Carr, H. Y. and Purcell, E. M., Phys. Rev., 94, 630 (1954); S. Meiboom and D. Gill, Rev. Sci. Instrum., 29, 688 (1958)Google Scholar
7 Stejskal, E.O., J. Chem. Phys., 43, 3597 (1965)Google Scholar
8 Doussal, P. Le and Sen, P.N., Phys. Rev. B, 46, 3465 (1992); P. Le Doussal and P.N. Sen, Physica A, 186, 115 (1992)Google Scholar
9 Vega, A. J., Poupko, R. and Luz, Z., J. Magn. Reson., 83, 111 (1989); A. J. Vega and R.W. Vaughan, J. Chem. Phys., 68, 1958 (1978)Google Scholar
10 Mitra, p. p. and Sen, P. N., Phys. Rev. B, 45, 143 (1992)Google Scholar
11 Stejskal, E.O., Phys. Rev. B, 45, 143 (1992).Google Scholar
12 Thompson, A. H., Katz, A. J. and Raschke, R. A., Phys. Rev. Len., 58, 29(1987)Google Scholar
13 Mitra, p. p., Sen, P. N., Schwartz, L. M. and Doussal, P. Le, Phs. Rev. Lett., 68, 3555 (1992)Google Scholar
14 Sen, P.N., Straley, C., Kenyon, W.E. and Whittingham, M.S., Geophysics, 55, 61 (1990)Google Scholar
15 Neuman, C. H., J. Chem. Phys., 60,4501 (1974)Google Scholar
16 Kleinberg, R. L. and Horsfield, M. A., J. Magn. Reson., 88, 9 (1990)Google Scholar
17 LeDoussal, P. and Mitra, Pabitra N., Phys. Rev. B, 45, 143 (1992)Google Scholar