Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T06:31:41.215Z Has data issue: false hasContentIssue false

NMR Spectroscopy of Synthetic Metals: Intercalated Graphite

Published online by Cambridge University Press:  15 February 2011

H. A. Resing
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375, and Dept. of Chemistry, The University of Maryland, College Park, MD 20742, USA
M. J. Moran
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375, and Dept. of Chemistry, The University of Maryland, College Park, MD 20742, USA
Gerald Ray Miller
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375, and Dept. of Chemistry, The University of Maryland, College Park, MD 20742, USA
L. G. Banks
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375, and Dept. of Chemistry, The University of Maryland, College Park, MD 20742, USA
C. F. Poranski Jr
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375, and Dept. of Chemistry, The University of Maryland, College Park, MD 20742, USA
D. C. Weber
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375, and Dept. of Chemistry, The University of Maryland, College Park, MD 20742, USA
Get access

Abstract

NMR techniques have been used in graphite intercalation systems for chemical analysis and for determinations of structure, molecular dynamics, exchange kinetics, conductivity and electron concentration. Salient results will be presented. We have been most interested in understanding the reaction

3AsF5 + 2Cn ⇋ 2CnAsF6 + AsF3 (1)

for which a single, extremely narrow 19F NMR line is observed when AsF5 reacts with graphite. In contrast, when the reaction

NO2AsF6(in CH3NO2) + Cn→NO2 ↑ + CnAsF6 (2)

is carried out, followed by addition of the stoichicmetric amount of AsF3, separate spectra for the AsF6 (a broad doublet) and lor AsF3 (a sharp 1:2:1 triplet) are observed, indicating that these two species do not exchange fluorine atoms, and suggesting that eq. (1) is not reversible. The AsF3 triplet gives an order parameter for the molecular thrae fold axis with respect to the graphite c-axis. The carbon-13 spectrum for a fifth stage intercalate of HNO3 shows the 2:2:1 triplet expected if each kind of layer Is resolved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vogel, F. L., J. Mater. Sci. 12, 98 (1977);Google Scholar
1a MacDiarmid, A. G. and Heeger, A. J. in “Molecular Metals”, Hatfield, W., Ed., Plenum, 1978, p. 161.CrossRefGoogle Scholar
2. Forsman, W. C. and Mertwoy, H. B., Synthetic Met. 2, 171 (1980).CrossRefGoogle Scholar
3. Miller, G. R., Resing, H. A., Vogel, F. L., Pron, A., Wu, T. C., and Billaud, D., J. Phys. Chem. 84, 3333 (1980).CrossRefGoogle Scholar
4. Nohr, R. S., Brant, P., Weber, D. C., and Wynne, K. J., Polymer Preprints 23 129 (1982).Google Scholar
5. Moran, M. J., Miller, G. R., DeMarco, R. A., and Resing, H. A., unpublished.Google Scholar
6. Vogel, F. L. and Zeller, C., in “Molecular Metals” [1], p. 289.Google Scholar
7. Resing, H. A., Moran, M. J., and Miller, G. R., J. Chem. Phys. 76, 170 (1982).CrossRefGoogle Scholar
8. Resing, H. A., Weber, D. C., Anderson, M., Miller, G. R., Moran, M., Poranski, C. F. Jr., and Mattix, L., Polymer Preprints 23, 101 (1982).Google Scholar
9. Miller, G. R., Poranski, C. F. Jr, and Resing, H. A., unpublished.Google Scholar
10. Resing, H. A., Reardon, J. P., Weber, D., Brant, P., Vogel, F. L., Wu, T. C., Billaud, D., and Pron, A. in “Magnetic Resonance in Colloid and Interface Sci.”, Fraissard, J. P. and Resing, H. A., Eds., Reidel, Dordrecht, (1980), p. 547.Google Scholar
11. Miller, G. R., Resing, H. A., Brant, P., Moran, M. J., Vogel, F. L., Wu, T. C., Billaud, D. and Pron, A., Synthetic Metals 2, 237 (1980).CrossRefGoogle Scholar
12. Miller, G. R., Resing, H. A., Banks, L. G., Pron, A., Billaud, D. and Vogel, F. L., Abstracts of Papers, ACS Fall Mtg., 1981.Google Scholar
13. Miller, G. R., Resing, H. A., and Moran, M. J., unpublished.Google Scholar
14. Resing, H. A., Miller, G. R., Moran, M. J., Reardon, J. P. and Dominguez, D., Extended Abstracts, 15th Biennial Conf. on Carbon, 1981, p. 369.Google Scholar
15. Miller, G. R., Moran, M. J., Resing, H. A., and Banks, L. G., Extended Abstracts, 15th Biennial Conf. on Carbon, 1981, p. 369.Google Scholar
16. Banks, L. G., Resing, H. A., Weber, D. C., Carosella, C., Miller, G. R., and Brant, P. J. Phys. Chem. Solids 43 351 (1982).Google Scholar